1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
|
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _CSLib_HeaderFile
#define _CSLib_HeaderFile
#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _CSLib_DerivativeStatus_HeaderFile
#include <CSLib_DerivativeStatus.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _CSLib_NormalStatus_HeaderFile
#include <CSLib_NormalStatus.hxx>
#endif
#ifndef _Standard_Integer_HeaderFile
#include <Standard_Integer.hxx>
#endif
class gp_Vec;
class gp_Dir;
class TColgp_Array2OfVec;
class CSLib_Class2d;
class CSLib_NormalPolyDef;
//! This package implements functions for basis geometric <br>
//! computation on curves and surfaces. <br>
//! The tolerance criterions used in this package are <br>
//! Resolution from package gp and RealEpsilon from class <br>
//! Real of package Standard. <br>
class CSLib {
public:
void* operator new(size_t,void* anAddress)
{
return anAddress;
}
void* operator new(size_t size)
{
return Standard::Allocate(size);
}
void operator delete(void *anAddress)
{
if (anAddress) Standard::Free((Standard_Address&)anAddress);
}
//! Computes the normal direction of a surface as the cross product <br>
//! between D1U and D1V. <br>
//! If D1U has null length or D1V has null length or D1U and D1V are <br>
//! parallel the normal is undefined. <br>
//! To check that D1U and D1V are colinear the sinus of the angle <br>
//! between D1U and D1V is computed and compared with SinTol. <br>
//! The normal is computed if Status == Done else the Status gives the <br>
//! reason why the computation has failed. <br>
Standard_EXPORT static void Normal(const gp_Vec& D1U,const gp_Vec& D1V,const Standard_Real SinTol,CSLib_DerivativeStatus& Status,gp_Dir& Normal) ;
//! If there is a singularity on the surface the previous method <br>
//! cannot compute the local normal. <br>
//! This method computes an approched normal direction of a surface. <br>
//! It does a limited development and needs the second derivatives <br>
//! on the surface as input data. <br>
//! It computes the normal as follow : <br>
//! N(u, v) = D1U ^ D1V <br>
//! N(u0+du,v0+dv) = N0 + DN/du(u0,v0) * du + DN/dv(u0,v0) * dv + Eps <br>
//! with Eps->0 so we can have the equivalence N ~ dN/du + dN/dv. <br>
//! DNu = ||DN/du|| and DNv = ||DN/dv|| <br>
//! <br>
//! . if DNu IsNull (DNu <= Resolution from gp) the answer Done = True <br>
//! the normal direction is given by DN/dv <br>
//! . if DNv IsNull (DNv <= Resolution from gp) the answer Done = True <br>
//! the normal direction is given by DN/du <br>
//! . if the two directions DN/du and DN/dv are parallel Done = True <br>
//! the normal direction is given either by DN/du or DN/dv. <br>
//! To check that the two directions are colinear the sinus of the <br>
//! angle between these directions is computed and compared with <br>
//! SinTol. <br>
//! . if DNu/DNv or DNv/DNu is lower or equal than Real Epsilon <br>
//! Done = False, the normal is undefined <br>
//! . if DNu IsNull and DNv is Null Done = False, there is an <br>
//! indetermination and we should do a limited developpement at <br>
//! order 2 (it means that we cannot omit Eps). <br>
//! . if DNu Is not Null and DNv Is not Null Done = False, there are <br>
//! an infinity of normals at the considered point on the surface. <br>
Standard_EXPORT static void Normal(const gp_Vec& D1U,const gp_Vec& D1V,const gp_Vec& D2U,const gp_Vec& D2V,const gp_Vec& D2UV,const Standard_Real SinTol,Standard_Boolean& Done,CSLib_NormalStatus& Status,gp_Dir& Normal) ;
//! Computes the normal direction of a surface as the cross product <br>
//! between D1U and D1V. <br>
//! <br>
Standard_EXPORT static void Normal(const gp_Vec& D1U,const gp_Vec& D1V,const Standard_Real MagTol,CSLib_NormalStatus& Status,gp_Dir& Normal) ;
//! find the first order k0 of deriviative of NUV <br>
//! where: foreach order < k0 all the derivatives of NUV are <br>
//! null all the derivatives of NUV corresponding to the order <br>
//! k0 are collinear and have the same sens. <br>
//! In this case, normal at U,V is unique. <br>
Standard_EXPORT static void Normal(const Standard_Integer MaxOrder,const TColgp_Array2OfVec& DerNUV,const Standard_Real MagTol,const Standard_Real U,const Standard_Real V,const Standard_Real Umin,const Standard_Real Umax,const Standard_Real Vmin,const Standard_Real Vmax,CSLib_NormalStatus& Status,gp_Dir& Normal,Standard_Integer& OrderU,Standard_Integer& OrderV) ;
//! -- Computes the derivative of order Nu in the -- <br>
//! direction U and Nv in the direction V of the not -- <br>
//! normalized normal vector at the point P(U,V) The <br>
//! array DerSurf contain the derivative (i,j) of the surface <br>
//! for i=0,Nu+1 ; j=0,Nv+1 <br>
Standard_EXPORT static gp_Vec DNNUV(const Standard_Integer Nu,const Standard_Integer Nv,const TColgp_Array2OfVec& DerSurf) ;
//! Computes the derivatives of order Nu in the direction Nu <br>
//! and Nv in the direction Nv of the not normalized vector <br>
//! N(u,v) = dS1/du * dS2/dv (cases where we use an osculating surface) <br>
//! DerSurf1 are the derivatives of S1 <br>
Standard_EXPORT static gp_Vec DNNUV(const Standard_Integer Nu,const Standard_Integer Nv,const TColgp_Array2OfVec& DerSurf1,const TColgp_Array2OfVec& DerSurf2) ;
//! -- Computes the derivative of order Nu in the -- <br>
//! direction U and Nv in the direction V of the <br>
//! normalized normal vector at the point P(U,V) array <br>
//! DerNUV contain the derivative (i+Iduref,j+Idvref) <br>
//! of D1U ^ D1V for i=0,Nu ; j=0,Nv Iduref and Idvref <br>
//! correspond to a derivative of D1U ^ D1V which can <br>
//! be used to compute the normalized normal vector. <br>
//! In the regular cases , Iduref=Idvref=0. <br>
Standard_EXPORT static gp_Vec DNNormal(const Standard_Integer Nu,const Standard_Integer Nv,const TColgp_Array2OfVec& DerNUV,const Standard_Integer Iduref = 0,const Standard_Integer Idvref = 0) ;
protected:
private:
friend class CSLib_Class2d;
friend class CSLib_NormalPolyDef;
};
// other Inline functions and methods (like "C++: function call" methods)
#endif
|