// This file is generated by WOK (CPPExt). // Please do not edit this file; modify original file instead. // The copyright and license terms as defined for the original file apply to // this header file considered to be the "object code" form of the original source. #ifndef _CSLib_HeaderFile #define _CSLib_HeaderFile #ifndef _Standard_HeaderFile #include #endif #ifndef _Standard_Macro_HeaderFile #include #endif #ifndef _Standard_Real_HeaderFile #include #endif #ifndef _CSLib_DerivativeStatus_HeaderFile #include #endif #ifndef _Standard_Boolean_HeaderFile #include #endif #ifndef _CSLib_NormalStatus_HeaderFile #include #endif #ifndef _Standard_Integer_HeaderFile #include #endif class gp_Vec; class gp_Dir; class TColgp_Array2OfVec; class CSLib_Class2d; class CSLib_NormalPolyDef; //! This package implements functions for basis geometric
//! computation on curves and surfaces.
//! The tolerance criterions used in this package are
//! Resolution from package gp and RealEpsilon from class
//! Real of package Standard.
class CSLib { public: void* operator new(size_t,void* anAddress) { return anAddress; } void* operator new(size_t size) { return Standard::Allocate(size); } void operator delete(void *anAddress) { if (anAddress) Standard::Free((Standard_Address&)anAddress); } //! Computes the normal direction of a surface as the cross product
//! between D1U and D1V.
//! If D1U has null length or D1V has null length or D1U and D1V are
//! parallel the normal is undefined.
//! To check that D1U and D1V are colinear the sinus of the angle
//! between D1U and D1V is computed and compared with SinTol.
//! The normal is computed if Status == Done else the Status gives the
//! reason why the computation has failed.
Standard_EXPORT static void Normal(const gp_Vec& D1U,const gp_Vec& D1V,const Standard_Real SinTol,CSLib_DerivativeStatus& Status,gp_Dir& Normal) ; //! If there is a singularity on the surface the previous method
//! cannot compute the local normal.
//! This method computes an approched normal direction of a surface.
//! It does a limited development and needs the second derivatives
//! on the surface as input data.
//! It computes the normal as follow :
//! N(u, v) = D1U ^ D1V
//! N(u0+du,v0+dv) = N0 + DN/du(u0,v0) * du + DN/dv(u0,v0) * dv + Eps
//! with Eps->0 so we can have the equivalence N ~ dN/du + dN/dv.
//! DNu = ||DN/du|| and DNv = ||DN/dv||
//!
//! . if DNu IsNull (DNu <= Resolution from gp) the answer Done = True
//! the normal direction is given by DN/dv
//! . if DNv IsNull (DNv <= Resolution from gp) the answer Done = True
//! the normal direction is given by DN/du
//! . if the two directions DN/du and DN/dv are parallel Done = True
//! the normal direction is given either by DN/du or DN/dv.
//! To check that the two directions are colinear the sinus of the
//! angle between these directions is computed and compared with
//! SinTol.
//! . if DNu/DNv or DNv/DNu is lower or equal than Real Epsilon
//! Done = False, the normal is undefined
//! . if DNu IsNull and DNv is Null Done = False, there is an
//! indetermination and we should do a limited developpement at
//! order 2 (it means that we cannot omit Eps).
//! . if DNu Is not Null and DNv Is not Null Done = False, there are
//! an infinity of normals at the considered point on the surface.
Standard_EXPORT static void Normal(const gp_Vec& D1U,const gp_Vec& D1V,const gp_Vec& D2U,const gp_Vec& D2V,const gp_Vec& D2UV,const Standard_Real SinTol,Standard_Boolean& Done,CSLib_NormalStatus& Status,gp_Dir& Normal) ; //! Computes the normal direction of a surface as the cross product
//! between D1U and D1V.
//!
Standard_EXPORT static void Normal(const gp_Vec& D1U,const gp_Vec& D1V,const Standard_Real MagTol,CSLib_NormalStatus& Status,gp_Dir& Normal) ; //! find the first order k0 of deriviative of NUV
//! where: foreach order < k0 all the derivatives of NUV are
//! null all the derivatives of NUV corresponding to the order
//! k0 are collinear and have the same sens.
//! In this case, normal at U,V is unique.
Standard_EXPORT static void Normal(const Standard_Integer MaxOrder,const TColgp_Array2OfVec& DerNUV,const Standard_Real MagTol,const Standard_Real U,const Standard_Real V,const Standard_Real Umin,const Standard_Real Umax,const Standard_Real Vmin,const Standard_Real Vmax,CSLib_NormalStatus& Status,gp_Dir& Normal,Standard_Integer& OrderU,Standard_Integer& OrderV) ; //! -- Computes the derivative of order Nu in the --
//! direction U and Nv in the direction V of the not --
//! normalized normal vector at the point P(U,V) The
//! array DerSurf contain the derivative (i,j) of the surface
//! for i=0,Nu+1 ; j=0,Nv+1
Standard_EXPORT static gp_Vec DNNUV(const Standard_Integer Nu,const Standard_Integer Nv,const TColgp_Array2OfVec& DerSurf) ; //! Computes the derivatives of order Nu in the direction Nu
//! and Nv in the direction Nv of the not normalized vector
//! N(u,v) = dS1/du * dS2/dv (cases where we use an osculating surface)
//! DerSurf1 are the derivatives of S1
Standard_EXPORT static gp_Vec DNNUV(const Standard_Integer Nu,const Standard_Integer Nv,const TColgp_Array2OfVec& DerSurf1,const TColgp_Array2OfVec& DerSurf2) ; //! -- Computes the derivative of order Nu in the --
//! direction U and Nv in the direction V of the
//! normalized normal vector at the point P(U,V) array
//! DerNUV contain the derivative (i+Iduref,j+Idvref)
//! of D1U ^ D1V for i=0,Nu ; j=0,Nv Iduref and Idvref
//! correspond to a derivative of D1U ^ D1V which can
//! be used to compute the normalized normal vector.
//! In the regular cases , Iduref=Idvref=0.
Standard_EXPORT static gp_Vec DNNormal(const Standard_Integer Nu,const Standard_Integer Nv,const TColgp_Array2OfVec& DerNUV,const Standard_Integer Iduref = 0,const Standard_Integer Idvref = 0) ; protected: private: friend class CSLib_Class2d; friend class CSLib_NormalPolyDef; }; // other Inline functions and methods (like "C++: function call" methods) #endif