1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
|
#! /usr/bin/python
import os
import sys
import re
from Numeric import *
from LinearAlgebra import *
nampat = re.compile("([A-Z][a-z]?[+=-][A-Z][a-z]?[+=-][A-Z][a-z]?)\.1\.log")
thetapat = re.compile(" INPUT CARD\> *theta *= *([\d\.-]+)")
engpat = re.compile(" FINAL U-B3LYP ENERGY IS +([\d\.-]+)")
hobond = re.compile("[A-Z+=]+\.")
Hartree = 4.3597482 # attoJoules
Bohr = 0.5291772083 # Angstroms
def fexist(fname):
try: os.stat(fname)
except OSError: return False
return True
def findnext(f,pat):
while 1:
card = f.readline()
if not card: return None
m = pat.match(card)
if m: return m
def ending(nam,suf):
if suf==nam[-len(suf):]: return nam
else: return nam+suf
def readangle(name):
b=zeros((0,2),Float)
for num in "123456789":
fn='angles/'+name+'.'+num+'.log'
if not fexist(fn): continue
f=open(fn)
theta = 2*(180-float(findnext(f,thetapat).group(1)))*pi/180.0
try: e = float(findnext(f,engpat).group(1))*Hartree
except AttributeError:
# print '# bad energy in',name+'.'+num
e=0.0
if e != 0.0: b=concatenate((b,array(((theta,e),))),axis=0)
return b
# return a function that evals a polynomial
def poly(c):
def ep(x):
b=0.0
for q in c:
b = q+x*b
return b
return ep
# The derivative of a polynomial
def dif(p):
a=arange(len(p))[::-1]
return (a*p)[:-1]
def newton(f,df,g):
fg=f(g)
while abs(fg)>1e-8:
dfg=df(g)
g=g-fg/dfg
fg=f(g)
return g
def quadmin(a,fa,b,fb,c,fc):
num = (b-a)**2 * (fb-fc) - (b-c)**2 * (fb-fa)
den = (b-a) * (fb-fc) - (b-c) * (fb-fa)
if den == 0.0: return b
return b - num / (2*den)
def golden(f,a,fa,b,fb,c,fc, tol=1e-2):
if c-a<tol: return quadmin(a,fa,b,fb,c,fc)
if c-b > b-a:
new = b+0.38197*(c-b)
fnew = f(new)
if fnew < fb: return golden(f, b,fb, new,fnew, c,fc)
else: return golden(f, a,fa, b,fb, new, fnew)
else:
new = a+0.61803*(b-a)
fnew = f(new)
if fnew < fb: return golden(f, a, fa, new,fnew, b,fb)
else: return golden(f, new, fnew, b,fb, c,fc)
def ak(m):
# find lowest point
lo=m[0][1]
ix=0
for i in range(shape(m)[0]):
if m[i][1] < lo:
lo=m[i][1]
ix=i
# take it and its neighbors for parabolic interpolation
a = m[ix-1][0]
fa= m[ix-1][1]
b = m[ix][0]
fb= m[ix][1]
c = m[ix+1][0]
fc= m[ix+1][1]
# the lowest point on the parabola
th0 = quadmin(a,fa,b,fb,c,fc)
# its value via Lagrange's formula
eth0 = (fa*((th0-b)*(th0-c))/((a-b)*(a-c)) +
fb*((th0-a)*(th0-c))/((b-a)*(b-c)) +
fc*((th0-a)*(th0-b))/((c-a)*(c-b)))
# adjust points to min of 0
m=m-array([0.0,eth0])
fa= m[ix-1][1]
fb= m[ix][1]
fc= m[ix+1][1]
# stiffness, interpolated between two triples of points
# this assumes equally spaced abcissas
num = (b - a)*fc + (a - c)*fb + (c - b)*fa
den = (b - a)* c**2 + (a**2 - b**2 )*c + a*b**2 - a**2 * b
Kth1 = 200.0 * num / den
ob = b
if th0>b: ix += 1
else: ix -= 1
a = m[ix-1][0]
fa= m[ix-1][1]
b = m[ix][0]
fb= m[ix][1]
c = m[ix+1][0]
fc= m[ix+1][1]
num = (b - a)*fc + (a - c)*fb + (c - b)*fa
den = (b - a)* c**2 + (a**2 - b**2 )*c + a*b**2 - a**2 * b
Kth2 = 200.0 * num / den
Kth = Kth1 + (Kth2-Kth1)*(th0-ob)/(b-ob)
return th0, Kth
for fn in os.listdir('angles'):
m=nampat.match(fn)
if not m: continue
name=m.group(1)
m=readangle(name)
## x=m[:,0]
## xn=1.0
## a=zeros((shape(m)[0],5),Float)
## for i in range(5):
## a[:,4-i]=xn
## xn=x*xn
## b=m[:,1]
## coef, sosr, rank, svs = linear_least_squares(a,b)
## d2f=poly(dif(dif(coef)))
## nx = newton(poly(dif(coef)), d2f, 1.5)
## print name, 'theta0=', nx, 'Ktheta=', d2f(nx)
# find lowest point
lo=m[0][1]
ix=0
for i in range(shape(m)[0]):
if m[i][1] < lo:
lo=m[i][1]
ix=i
# take it and its neighbors for parabolic interpolation
if ix==0: ix=1
if ix>len(m)-2: ix=len(m)-2
m2=m[ix-1:ix+2]
x=m2[:,0]
xn=1.0
a=zeros((3,3),Float)
for i in [2,1,0]:
a[:,i]=xn
xn=x*xn
b=m2[:,1]
coef, sosr, rank, svs = linear_least_squares(a,b)
d2f=poly(dif(dif(coef)))
nx = newton(poly(dif(coef)), d2f, m2[1,0])
print name, 'theta0=', nx, 'Ktheta=', d2f(nx)
|