summaryrefslogtreecommitdiff
path: root/trunk/darwin/firmware/Arduino/Single_Arduino_SNAP_v2/stepper_control.pde
blob: d75c104a93566279c6fb3dc272b7130a6cec5212 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
//init our variables
long max_delta;
long x_counter;
long y_counter;
long z_counter;
bool x_can_step;
bool y_can_step;
bool z_can_step;
int milli_delay;

void init_steppers()
{
	//init our points.
	current_units.x = 0.0;
	current_units.y = 0.0;
	current_units.z = 0.0;
	target_units.x = 0.0;
	target_units.y = 0.0;
	target_units.z = 0.0;
	
	pinMode(X_STEP_PIN, OUTPUT);
	pinMode(X_DIR_PIN, OUTPUT);
	pinMode(X_ENABLE_PIN, OUTPUT);
	pinMode(X_MIN_PIN, INPUT);
	pinMode(X_MAX_PIN, INPUT);
	
	pinMode(Y_STEP_PIN, OUTPUT);
	pinMode(Y_DIR_PIN, OUTPUT);
	pinMode(Y_ENABLE_PIN, OUTPUT);
	pinMode(Y_MIN_PIN, INPUT);
	pinMode(Y_MAX_PIN, INPUT);
	
	pinMode(Z_STEP_PIN, OUTPUT);
	pinMode(Z_DIR_PIN, OUTPUT);
	pinMode(Z_ENABLE_PIN, OUTPUT);
	pinMode(Z_MIN_PIN, INPUT);
	pinMode(Z_MAX_PIN, INPUT);
	
	//figure our stuff.
	calculate_deltas();
}

void dda_move(long micro_delay)
{
	//enable our steppers
	digitalWrite(X_ENABLE_PIN, HIGH);
	digitalWrite(Y_ENABLE_PIN, HIGH);
	digitalWrite(Z_ENABLE_PIN, HIGH);
	
	//figure out our deltas
	max_delta = max(delta_steps.x, delta_steps.y);
	max_delta = max(delta_steps.z, max_delta);

	//init stuff.
	long x_counter = -max_delta/2;
	long y_counter = -max_delta/2;
	long z_counter = -max_delta/2;
	
	//our step flags
	bool x_can_step = 0;
	bool y_can_step = 0;
	bool z_can_step = 0;
	
	if (micro_delay >= 16383)
		milli_delay = micro_delay / 1000;
	else
		milli_delay = 0;

/*	
	Serial.print("max:");
	Serial.println(max_delta, DEC);
	Serial.print("xd:");
	Serial.println(delta_steps.x, DEC);
	Serial.print("yd:");
	Serial.println(delta_steps.y, DEC);
	Serial.print("zd:");
	Serial.println(delta_steps.z, DEC);
	
	Serial.print("msec:");
	Serial.println(millis, DEC);
	Serial.print("usec:");
	Serial.println(micro_delay, DEC);
*/
	//do our DDA line!
	do
	{
		x_can_step = can_step(X_MIN_PIN, X_MAX_PIN, current_steps.x, target_steps.x, x_direction);
		y_can_step = can_step(Y_MIN_PIN, Y_MAX_PIN, current_steps.y, target_steps.y, y_direction);
		z_can_step = can_step(Z_MIN_PIN, Z_MAX_PIN, current_steps.z, target_steps.z, z_direction);

		if (x_can_step)
		{
			x_counter += delta_steps.x;
			
			if (x_counter > 0)
			{
				do_step(X_STEP_PIN);
				x_counter -= max_delta;
				
				if (x_direction)
					current_steps.x++;
				else
					current_steps.x--;
			}
		}

		if (y_can_step)
		{
			y_counter += delta_steps.y;
			
			if (y_counter > 0)
			{
				do_step(Y_STEP_PIN);
				y_counter -= max_delta;

				if (y_direction)
					current_steps.y++;
				else
					current_steps.y--;
			}
		}
		
		if (z_can_step)
		{
			z_counter += delta_steps.z;
			
			if (z_counter > 0)
			{
				do_step(Z_STEP_PIN);
				z_counter -= max_delta;
				
				if (z_direction)
					current_steps.z++;
				else
					current_steps.z--;
			}
		}
		
		extruder_manage_temperature();
				
		//wait for next step.
		if (milli_delay > 0)
			delay(milli_delay);			
		else
			delayMicroseconds(micro_delay);
	}
	while (x_can_step || y_can_step || z_can_step);
	
	//set our points to be the same
	current_units.x = target_units.x;
	current_units.y = target_units.y;
	current_units.z = target_units.z;
	calculate_deltas();
}

bool can_step(byte min_pin, byte max_pin, long current, long target, byte direction)
{
	//stop us if we're on target
	if (target == current)
		return false;
	//stop us if we're at home and still going 
	else if (read_switch(min_pin) && !direction)
		return false;
	//stop us if we're at max and still going
	else if (read_switch(max_pin) && direction)
		return false;

	//default to being able to step
	return true;
}

void do_step(byte step_pin)
{
	digitalWrite(step_pin, HIGH);
	delayMicroseconds(5);
	digitalWrite(step_pin, LOW);
}

bool read_switch(byte pin)
{
	//dual read as crude debounce
	
	if ( SENSORS_INVERTING )
		return !digitalRead(pin) && !digitalRead(pin);
	else
		return digitalRead(pin) && digitalRead(pin);
}

void set_target(float x, float y, float z)
{
	target.x = x;
	target.y = y;
	target.z = z;
	
	calculate_deltas();
}

void set_position(float x, float y, float z)
{
	current.x = x;
	current.y = y;
	current.z = z;
	
	calculate_deltas();
}

void calculate_deltas()
{
	//figure our deltas.
	delta.x = abs(target.x - current.x);
	delta.y = abs(target.y - current.y);
	delta.z = abs(target.z - current.z);
	
	//what is our direction
	x_direction = (target_units.x >= current_units.x);
	y_direction = (target_units.y >= current_units.y);
	z_direction = (target_units.z >= current_units.z);

	//set our direction pins as well
	digitalWrite(X_DIR_PIN, x_direction);
	digitalWrite(Y_DIR_PIN, y_direction);
	digitalWrite(Z_DIR_PIN, z_direction);
}

void disable_steppers()
{
	//enable our steppers
	digitalWrite(X_ENABLE_PIN, LOW);
	digitalWrite(Y_ENABLE_PIN, LOW);
	digitalWrite(Z_ENABLE_PIN, LOW);
}