1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
|
"""
This module plots many shapes a polygon objects containing a series of lines
The Polygon object can be found in reprap.toolpath
"""
# Python module properties
__author__ = "Stefan Blanke (greenarrow) (greenarrow@users.sourceforge.net)"
__license__ = "GPL 3.0"
__credits__ = "Author of potrace"
__licence__ = """
pyRepRap is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
pyRepRap is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with pyRepRap. If not, see <http://www.gnu.org/licenses/>.
"""
import math, os
import toolpath
# Fill modes
FILL_LOCUS = 1
FILL_LINES = 2
debug = False
def line(line):
"""Returns polygon for line (x1, y2, x2, y2) as a Polygon object"""
poly = toolpath.Polygon()
x1, y1, x2, y2 = line
poly.addPoint( toolpath.Point(x1, y1) )
poly.addPoint( toolpath.Point(x2, y2) )
return poly
def point(point):
"""Returns polygon for point (x, y) as a Polygon Object"""
poly = toolpath.Polygon()
x, y = point
poly.addPoint( toolpath.Point(x, y) )
return poly
def arc(x, y, radius, startAngle, endAngle, resolution):
"""Returns polygon an arc with x, y, radius, start angle (radians), end engle (radians) and resolution (lines per mm) a Polygon object"""
# This function works in degrees but takes parameters in radians
poly = toolpath.Polygon()
if debug: print "Plotting arc at", x, y, "from", startAngle, "(", math.degrees(startAngle), ") to", endAngle, "(", math.degrees(endAngle), ")"
startAngle, endAngle = math.degrees(startAngle), math.degrees(endAngle)
circumference = float(2) * math.pi * float(radius)
angleDiv = ( float(360) / float( circumference * resolution ) )# + ( 360 % int( circumference * resolution ) )
lastX, lastY = _calcCircle( startAngle, radius )
# compensate for arc going beyond 360 deg
if startAngle > endAngle:
endAngle += 360
# make detail proportional to radius to always give good resolution
for theta in _frange( startAngle, endAngle + angleDiv, angleDiv ):
cx, cy = _calcCircle(theta, radius)
poly.addPoint( toolpath.Point(x + cx, y + cy) )
return poly
def circle(x, y, radius, resolution, fillDensity = False):
"""Returns polygon for a filled circle with x, y, radius, resolution (lines per mm) and fill density (lines per mm) as a Polygon object"""
poly = toolpath.Polygon()
if fillDensity:
numFills = int( float(fillDensity) * float(radius) )
else:
numFills = 1
for d in range( 1, numFills + 1 ):
r = ( float(d) / float(numFills) ) * float(radius)
if debug: print "using r", r, "mm"
poly.addPolygon( arc( x, y, r, math.radians(0), math.radians(360), resolution ) )
return poly
def ellipse(x, y, a, b, resolution, fillDensity = False):
"""Returns polygon for a filled ellipse with x, y, a, b, resolution (lines per mm) and fill density (lines per mm) as a Polygon object"""
poly = toolpath.Polygon()
if not resolution:
resolution = self.circleResolution
if fillDensity:
if a > b:
largerDimension = a
else:
largerDimension = b
numFills = int( float(fillDensity) * float(largerDimension) )
else:
numFills = 1
startAngle, endAngle = 0, 360
# Not really cicumference but will do?
circumference = float(2) * math.pi * float( float( a + b ) / 2 )
angleDiv = ( float(360) / float( circumference * resolution ) ) # + ( 360 % int( circumference * resolution ) )
lastX, lastY = _calcEllipse( startAngle, a, b )
# Compensate for arc going beyond 360 deg
if startAngle > endAngle:
endAngle += 360
for d in range( 1, numFills + 1 ):
ra = ( float(d) / float(numFills) ) * float(a)
rb = ( float(d) / float(numFills) ) * float(b)
for theta in _frange( startAngle, endAngle + angleDiv, angleDiv ):
newX, newY = _calcEllipse( theta, ra, rb )
aLine = poly.addPoint( toolpath.Point(newX + x , newY + y) )
if debug: print "aLine", aLine
return poly
# Return polygon for a filled rectangle
def rectangle(x, y, width, height, fillDensity = False):
"""Returns polygon for line x, y, width, height and fill density (lines per mm) as a Polygon object"""
poly = toolpath.Polygon()
numFillsY = int( float(fillDensity) * float(height) )
cornerX, cornerY = x - ( width / 2 ), y - ( height / 2 )
invert = False
for dy in range( 0, numFillsY + 1 ):
ry = ( float(dy) / float(numFillsY) ) * float(height)
line1 = (cornerX, cornerY + ry, cornerX + width, cornerY + ry )
line2 = (cornerX, cornerY + ry, cornerX + width, cornerY - ry )
if invert:
line1 = _reverseLine(line1)
invert = not invert
x1, y1, x2, y2 = line1
poly.addPoint( toolpath.Point(x1, y1) )
poly.addPoint( toolpath.Point(x2, y2) )
poly.addPoint( toolpath.Point(cornerX, cornerY) )
poly.addPoint( toolpath.Point(cornerX, cornerY + height) )
poly.addPoint( toolpath.Point(cornerX + width, cornerY) )
poly.addPoint( toolpath.Point(cornerX + width, cornerY + height) )
return poly
def circleStroke(x1, y1, x2, y2, radius, resolution, fillDensity = False ):
"""Returns polygon for a photoplotter moving stroke using a circular aperture with x, y, radius, resolution (lines per mm) and fill density (lines per mm) as a Polygon object"""
poly = toolpath.Polygon()
deltaY = y2 - y1
deltaX = x2 - x1
if x1 == x2 and y1 == y2:
#print "this is not a move, this is why software like eagle that uses drm on your own files....is crap"
poly.addPolygon( circle( x1, y1, radius, resolution = resolution, fillDensity = fillDensity ) )
else:
if debug: print "PMWC, fill density", fillDensity
#Plot central line
poly.addPoint( toolpath.Point(x1, y1) )
poly.addPoint( toolpath.Point(x2, y2) )
# For each locus
numFills = int( float(fillDensity) * float(radius) )
for d in range( 1, numFills + 1 ):
r = ( float(d) / float(numFills) ) * float(radius)
if debug: print "using r", r, "mm"
theta = _angleFromDeltas( deltaX, deltaY )
rsintheta = r * math.sin( theta )
rcostheta = r * math.cos( theta )
# Makes sure angle is in correct quadrant
if deltaX > 0:
startOffset = math.radians(90)
endOffset = math.radians(-90)
else:
startOffset = math.radians(-90)
endOffset = math.radians(90)
if deltaY < 0:
startOffset = -startOffset
endOffset = -endOffset
# Plot side lines and end arcs (simi-circles) of locus
# reversing these point lets locus be drawn in one continual motion
poly.addPoint( toolpath.Point(x2 - rsintheta, y2 + rcostheta) )
poly.addPoint( toolpath.Point(x1 - rsintheta, y1 + rcostheta) )
poly.addPolygon( arc(x1, y1, r, theta + startOffset, theta + endOffset, resolution, fillDensity = False) )
poly.addPoint( toolpath.Point(x1 + rsintheta, y1 - rcostheta) )
poly.addPoint( toolpath.Point(x2 + rsintheta, y2 - rcostheta) )
poly.addPolygon( arc(x2, y2, r, theta - startOffset, theta - endOffset, resolution, fillDensity = False) )
return poly
def fill(polygon, fillDensity):
pass
def raster(fileName, originalWidth, originalHeight, svg = False):
"""Returns polygon for a vectorised raster as a Polygon object.
Uses external potrace program to convert raster file into polygon(s)
"""
poly = toolpath.Polygon()
if svg:
os.system("potrace --svg --output " + fileName[ :-3 ] + "svg " + fileName)
os.system("potrace --alphamax 0 --turdsize 5 --backend gimppath --output " + fileName[ :-3 ] + "gimppath " + fileName)
os.system("rm " + fileName)
f = open(fileName[ :-3 ] + "gimppath")
pathLines = f.readlines()
f.close()
os.system("rm " + fileName[ :-3 ] + "gimppath")
scale = 0.005 # temp - competely arbitary
# 1 / 200, i.e 1 / (resolution = 20 * 100 for some reason)
for l in pathLines:
parts = l.split(' ')
isPoint = False
for i, p in enumerate(parts):
if p == 'TYPE:':
ptype = int(parts[i + 1])
isPoint = True
elif p == 'X:':
x = float(parts[i + 1]) * scale
elif p == 'Y:':
y = float(parts[i + 1]) * scale
if isPoint:
poly.addPoint( toolpath.Point(x, y) )
#print "NEW POINT", x, y, ptype
# This should not be assumed?
poly.closed = True
"""
#this needs to be done on all paths at same time
maxX, maxY = 0, 0
for p in points:
x, y, t = p
maxX = max(maxX, x)
maxY = max(maxY, y)
print "max", maxX, maxY
#print "read", len(points), "points"
scaleX = originalWidth / maxX
scaleY = originalHeight / maxY
print "scales", scaleX, scaleY
for i in range(len(points)):
x, y, y = points[i]
x = x * scaleX
y = y * scaleY
points[i] = x, y, t
"""
#should make this return a list of all found polygons
return poly
############# General Maths Functions #############
# Return the coordinates of a point on a circle at theta (rad) with radius.
def _calcCircle(theta, radius):
x = math.cos( math.radians(theta) ) * radius
y = math.sin( math.radians(theta) ) * radius
return x, y
# Return the coordinates of a point on an ellipse at theta (rad) with a and b.
def _calcEllipse(theta, a, b):
x = math.cos( math.radians(theta) ) * a
y = math.sin( math.radians(theta) ) * b
return x, y
# Reverse line (swap x1, y1 and x2, y2)
def _reverseLine( line ):
x1, y1, x2, y2 = line
return x2, y2, x1, y1
# Return the angle between the line between two points (2D coordinates) and vetical?
def _angleFromDeltas( dx, dy ):
radius = math.sqrt( ( dx * dx ) + ( dy * dy ) )
#if radius != 0:
dx, dy = dx / radius, dy / radius
if dx > 0:
if dy > 0:
return math.asin(dx)
elif dy < 0:
return math.acos(dx) + math.radians(90)
else:
#print "moo1"
return 0
elif dx < 0:
if dy > 0:
return math.asin(dy) + math.radians(270)
elif dy < 0:
return math.radians(180) - math.asin(dx)
else:
#print "moo2"
return 0
else:
return math.radians(-90) # i think this should really be 90, it just makes thae program work wen its -90 :)
#else:
# print "Radius cannot be zero!, returning 0 (_angleFromDeltas, shapeplotter.py)"
# Range function accepting floats (by Dinu Gherman)
def _frange(start, end=None, inc=None):
if end == None:
end = start + 0.0
start = 0.0
if inc == None:
inc = 1.0
L = []
while 1:
next = start + len(L) * inc
if inc > 0 and next >= end:
break
elif inc < 0 and next <= end:
break
L.append(next)
return L
# Return length of vector
def _calcVectorLength(line):
x1, y1, x2, y2 = line
deltaX = max(x1, x2) - min(x1, x2)
deltaY = max(y1, y2) - min(y1, y2)
return math.sqrt( math.pow(deltaX, 2) + math.pow(deltaY, 2) )
|