1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
// File: math_NewtonMinimum.cxx
// Created: Fri May 3 09:33:31 1996
// Author: Philippe MANGIN
// <pmn@sgi38>
//#ifndef DEB
#define No_Standard_RangeError
#define No_Standard_OutOfRange
#define No_Standard_DimensionError
//#endif
#include <math_NewtonMinimum.ixx>
#include <math_Gauss.hxx>
#include <math_Jacobi.hxx>
//============================================================================
math_NewtonMinimum::math_NewtonMinimum(math_MultipleVarFunctionWithHessian& F,
const math_Vector& StartingPoint,
const Standard_Real Tolerance,
const Standard_Integer NbIterations,
const Standard_Real Convexity,
const Standard_Boolean WithSingularity)
//============================================================================
: TheLocation(1, F.NbVariables()),
TheGradient(1, F.NbVariables()),
TheStep(1, F.NbVariables(), 10*Tolerance),
TheHessian(1, F.NbVariables(), 1, F.NbVariables() )
{
XTol = Tolerance;
CTol = Convexity;
Itermax = NbIterations;
NoConvexTreatement = WithSingularity;
Convex = Standard_True;
// Done = Standard_True;
// TheStatus = math_OK;
Perform ( F, StartingPoint);
}
//============================================================================
math_NewtonMinimum::math_NewtonMinimum(math_MultipleVarFunctionWithHessian& F,
const Standard_Real Tolerance,
const Standard_Integer NbIterations,
const Standard_Real Convexity,
const Standard_Boolean WithSingularity)
//============================================================================
: TheLocation(1, F.NbVariables()),
TheGradient(1, F.NbVariables()),
TheStep(1, F.NbVariables(), 10*Tolerance),
TheHessian(1, F.NbVariables(), 1, F.NbVariables() )
{
XTol = Tolerance;
CTol = Convexity;
Itermax = NbIterations;
NoConvexTreatement = WithSingularity;
Convex = Standard_True;
Done = Standard_False;
TheStatus = math_NotBracketed;
}
//============================================================================
void math_NewtonMinimum::Delete()
{}
//============================================================================
void math_NewtonMinimum::Perform(math_MultipleVarFunctionWithHessian& F,
const math_Vector& StartingPoint)
//============================================================================
{
math_Vector Point1 (1, F.NbVariables());
Point1 = StartingPoint;
math_Vector Point2(1, F.NbVariables());
math_Vector* precedent = &Point1;
math_Vector* suivant = &Point2;
math_Vector* auxiliaire = precedent;
Standard_Boolean Ok = Standard_True;
Standard_Integer NbConv = 0, ii, Nreduction;
Standard_Real VPrecedent, VItere;
Done = Standard_True;
TheStatus = math_OK;
nbiter = 0;
while ( Ok && (NbConv < 2) ) {
nbiter++;
// Positionnement
Ok = F.Values(*precedent, VPrecedent, TheGradient, TheHessian);
if (!Ok) {
Done = Standard_False;
TheStatus = math_FunctionError;
return;
}
if (nbiter==1) {
PreviousMinimum = VPrecedent;
TheMinimum = VPrecedent;
}
// Traitement de la non convexite
math_Jacobi CalculVP(TheHessian);
if ( !CalculVP.IsDone() ) {
Done = Standard_False;
TheStatus = math_FunctionError;
return;
}
MinEigenValue = CalculVP.Values() ( CalculVP.Values().Min());
if ( MinEigenValue < CTol) {
Convex = Standard_False;
if (NoConvexTreatement) {
Standard_Real Delta = CTol+0.1*Abs(MinEigenValue) -MinEigenValue ;
for (ii=1; ii<=TheGradient.Length(); ii++) {
TheHessian(ii, ii) += Delta;
}
}
else {
TheStatus = math_FunctionError;
return;
}
}
// Schemas de Newton
math_Gauss LU(TheHessian, CTol/100);
if ( !LU.IsDone()) {
Done = Standard_False;
TheStatus = math_DirectionSearchError;
return;
}
LU.Solve(TheGradient, TheStep);
*suivant = *precedent - TheStep;
// Gestion de la convergence
F.Value(*suivant, TheMinimum);
if (IsConverged()) { NbConv++; }
else { NbConv=0; }
// Controle et corrections.
VItere = TheMinimum;
TheMinimum = PreviousMinimum;
Nreduction =0;
while (VItere > VPrecedent && Nreduction < 10) {
TheStep *= 0.4;
*suivant = *precedent - TheStep;
F.Value(*suivant, VItere);
Nreduction++;
}
if (VItere <= VPrecedent) {
auxiliaire = precedent;
precedent = suivant;
suivant = auxiliaire;
PreviousMinimum = VPrecedent;
TheMinimum = VItere;
Ok = (nbiter < Itermax);
if (!Ok && NbConv < 2) TheStatus = math_TooManyIterations;
}
else {
Ok = Standard_False;
TheStatus = math_DirectionSearchError;
}
}
TheLocation = *precedent;
}
//============================================================================
Standard_Boolean math_NewtonMinimum::IsConverged() const
//============================================================================
{
return ( (TheStep.Norm() <= XTol ) ||
( Abs(TheMinimum-PreviousMinimum) <= XTol*Abs(PreviousMinimum) ));
}
//============================================================================
void math_NewtonMinimum::Dump(Standard_OStream& o) const
//============================================================================
{
o<< "math_Newton Optimisation: ";
o << " Done =" << Done << endl;
o << " Status = " << (Standard_Integer)TheStatus << endl;
o <<" Location Vector = " << Location() << endl;
o <<" Minimum value = "<< Minimum()<< endl;
o <<" Previous value = "<< PreviousMinimum << endl;
o <<" Number of iterations = " <<NbIterations() << endl;
o <<" Convexity = " << Convex << endl;
o <<" Eigen Value = " << MinEigenValue << endl;
}
|