1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
|
//static const char* sccsid = "@(#)math_Gauss.cxx 3.2 95/01/10"; // Do not delete this line. Used by sccs.
//#ifndef DEB
#define No_Standard_RangeError
#define No_Standard_OutOfRange
#define No_Standard_DimensionError
//#endif
#include <math_Gauss.ixx>
#include <math_Recipes.hxx>
#include <math_NotSquare.hxx>
#include <StdFail_NotDone.hxx>
#include <Standard_DimensionError.hxx>
#include <Standard_NotImplemented.hxx>
math_Gauss::math_Gauss(const math_Matrix& A,
const Standard_Real MinPivot)
: LU (1, A.RowNumber(), 1, A.ColNumber()),
Index(1, A.RowNumber()) {
math_NotSquare_Raise_if(A.RowNumber() != A.ColNumber(), " ");
LU = A;
Standard_Integer Error = LU_Decompose(LU,
Index,
D,
MinPivot);
if(!Error) {
Done = Standard_True;
}
else {
Done = Standard_False;
}
}
void math_Gauss::Solve(const math_Vector& B, math_Vector& X) const{
StdFail_NotDone_Raise_if(!Done, " ");
X = B;
LU_Solve(LU,
Index,
X);
}
void math_Gauss::Solve (math_Vector& X) const{
StdFail_NotDone_Raise_if(!Done, " ");
if(X.Length() != LU.RowNumber()) {
Standard_DimensionError::Raise();
}
LU_Solve(LU,
Index,
X);
}
Standard_Real math_Gauss::Determinant() const{
StdFail_NotDone_Raise_if(!Done, " ");
Standard_Real Result = D;
for(Standard_Integer J = 1; J <= LU.UpperRow(); J++) {
Result *= LU(J,J);
}
return Result;
}
void math_Gauss::Invert(math_Matrix& Inv) const{
StdFail_NotDone_Raise_if(!Done, " ");
Standard_DimensionError_Raise_if((Inv.RowNumber() != LU.RowNumber()) ||
(Inv.ColNumber() != LU.ColNumber()),
" ");
Standard_Integer LowerRow = Inv.LowerRow();
Standard_Integer LowerCol = Inv.LowerCol();
math_Vector Column(1, LU.UpperRow());
Standard_Integer I, J;
for(J = 1; J <= LU.UpperRow(); J++) {
for(I = 1; I <= LU.UpperRow(); I++) {
Column(I) = 0.0;
}
Column(J) = 1.0;
LU_Solve(LU, Index, Column);
for(I = 1; I <= LU.RowNumber(); I++) {
Inv(I+LowerRow-1,J+LowerCol-1) = Column(I);
}
}
}
void math_Gauss::Dump(Standard_OStream& o) const {
o << "math_Gauss ";
if(Done) {
o<< " Status = Done \n";
o << " Determinant of A = " << D << endl;
}
else {
o << " Status = not Done \n";
}
}
|