1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
//static const char* sccsid = "@(#)math_Crout.cxx 3.2 95/01/10"; // Do not delete this line. Used by sccs.
// File math_Crout.cxx
// lpa le 20/08/91
//#ifndef DEB
#define No_Standard_RangeError
#define No_Standard_OutOfRange
#define No_Standard_DimensionError
//#endif
#include <math_Crout.ixx>
#include <math_NotSquare.hxx>
#include <StdFail_NotDone.hxx>
#include <math_Vector.hxx>
math_Crout::math_Crout(const math_Matrix& A, const Standard_Real MinPivot):
InvA(1, A.RowNumber(), 1, A.ColNumber())
{
Standard_Integer i,j,k;
Standard_Integer Nctl = A.RowNumber();
Standard_Integer lowr = A.LowerRow(), lowc = A.LowerCol();
Standard_Real scale;
math_Matrix L(1, Nctl, 1, Nctl);
math_Vector Diag(1, Nctl);
math_NotSquare_Raise_if(Nctl != A.ColNumber(), " ");
Det = 1;
for (i =1; i <= Nctl; i++) {
for (j = 1; j <= i -1; j++) {
scale = 0.0;
for (k = 1; k <= j-1; k++) {
scale += L(i,k)*L(j,k)*Diag(k);
}
L(i,j) = (A(i+lowr-1,j+lowc-1)-scale)/Diag(j);
}
scale = 0.0;
for (k = 1; k <= i-1; k++) {
scale += L(i,k)*L(i,k)*Diag(k);
}
Diag(i) = A(i+lowr-1,i+lowc-1)-scale;
Det *= Diag(i);
if (Abs(Diag(i)) <= MinPivot) {
Done = Standard_False;
return;
}
L(i,i) = 1.0;
}
// Calcul de l inverse de L:
//==========================
L(1,1) = 1./L(1,1);
for (i = 2; i <= Nctl; i++) {
for (k = 1; k <= i-1; k++) {
scale = 0.0;
for (j = k; j <= i-1; j++) {
scale += L(i,j)*L(j,k);
}
L(i,k) = -scale/L(i,i);
}
L(i,i) = 1./L(i,i);
}
// Calcul de l inverse de Mat:
//============================
for (j = 1; j <= Nctl; j++) {
scale = L(j,j)*L(j,j)/Diag(j);
for (k = j+1; k <= Nctl; k++) {
scale += L(k,j) *L(k,j)/Diag(k);
}
InvA(j,j) = scale;
for (i = j+1; i <= Nctl; i++) {
scale = L(i,j) *L(i,i)/Diag(i);
for (k = i+1; k <= Nctl; k++) {
scale += L(k,j)*L(k,i)/Diag(k);
}
InvA(i,j) = scale;
}
}
Done = Standard_True;
}
void math_Crout::Solve(const math_Vector& B, math_Vector& X) const
{
StdFail_NotDone_Raise_if(!Done, " ");
Standard_DimensionError_Raise_if((B.Length() != InvA.RowNumber()) ||
(X.Length() != B.Length()), " ");
Standard_Integer n = InvA.RowNumber();
Standard_Integer lowb = B.Lower(), lowx = X.Lower();
Standard_Integer i, j;
for (i = 1; i <= n; i++) {
X(i+lowx-1) = InvA(i, 1)*B(1+lowb-1);
for ( j = 2; j <= i; j++) {
X(i+lowx-1) += InvA(i, j)*B(j+lowb-1);
}
for (j = i+1; j <= n; j++) {
X(i+lowx-1) += InvA(j,i)*B(j+lowb-1);
}
}
}
void math_Crout::Dump(Standard_OStream& o) const
{
o << "math_Crout ";
if(Done) {
o << " Status = Done \n";
}
else {
o << " Status = not Done \n";
}
}
|