summaryrefslogtreecommitdiff
path: root/src/gp/gp_Mat.cdl
blob: 4224e515b427947a3f64aaacac5e255525f1e1a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
---Copyright:   Matra Datavision 1991
                     
class Mat   from gp  inherits Storable
   ---Purpose:
   -- Describes a three column, three row matrix. This sort of
   -- object is used in various vectorial or matrix computations.
        
uses XYZ     from gp,
     Address from Standard

raises ConstructionError from Standard,
       OutOfRange        from Standard

is


  Create  returns Mat;
        --- Purpose : creates  a matrix with null coefficients.
    	---C++: inline


  Create(a11,a12,a13,a21,a22,a23,a31,a32,a33: Real from Standard);
    	---C++: inline

  Create (Col1, Col2, Col3 : XYZ)   returns Mat;
        --- Purpose : Creates a matrix.
        --  Col1, Col2, Col3 are the 3 columns of the matrix.


  SetCol (me : in out; Col : Integer; Value : XYZ)
        --- Purpose : Assigns the three coordinates of Value to the column of index
        --   Col of this matrix. 
        -- Raises OutOfRange if Col < 1 or Col > 3.
     raises OutOfRange
     is static;


  SetCols (me : in out; Col1, Col2, Col3 : XYZ)     is static;
        --- Purpose : Assigns the number triples Col1, Col2, Col3 to the three
        --   columns of this matrix.


  SetCross (me : in out; Ref : XYZ)    is static;
        --- Purpose :
        --  Modifies the matrix  M so that applying it to any number
    	-- triple (X, Y, Z) produces the same result as the cross
    	-- product of Ref and the number triple (X, Y, Z):
        -- i.e.: M * {X,Y,Z}t = Ref.Cross({X, Y ,Z})
        --  this matrix is anti symmetric. To apply this matrix to the 
        --  triplet  {XYZ} is the same as to do the cross product between the
        --  triplet Ref and the triplet {XYZ}.
    	-- Note: this matrix is anti-symmetric.

  SetDiagonal (me : in out; X1, X2, X3 : Real)    is static;
       ---C++: inline
       --- Purpose : 
       --  Modifies the main diagonal of the matrix.
       --  <me>.Value (1, 1) = X1
       --  <me>.Value (2, 2) = X2
       --  <me>.Value (3, 3) = X3
       --  The other coefficients of the matrix are not modified.

  SetDot (me : in out; Ref : XYZ)   is static;
       --- Purpose :
       --  Modifies this matrix so that applying it to any number
       -- triple (X, Y, Z) produces the same result as the scalar
       -- product of Ref and the number triple (X, Y, Z):
       -- this * (X,Y,Z) = Ref.(X,Y,Z)
       -- Note: this matrix is symmetric.


  SetIdentity (me : in out)    is static;
    	---C++: inline
        --- Purpose : Modifies this matrix so that it represents the Identity matrix.

  SetRotation (me : in out; Axis : XYZ; Ang : Real)
        --- Purpose :
        --  Modifies this matrix so that it represents a rotation. Ang is the angular value in 
        --  radians and the XYZ axis gives the direction of the
        --  rotation. 
        --  Raises ConstructionError if XYZ.Modulus() <= Resolution()
     raises ConstructionError
     is static;


  SetRow (me : in out; Row : Integer; Value : XYZ)
        --- Purpose : Assigns the three coordinates of Value to the row of index
    	--   Row of this matrix. Raises OutOfRange if Row < 1 or Row > 3.
     raises OutOfRange
     is static;


  SetRows (me : in out; Row1, Row2, Row3 : XYZ)    is static;
        --- Purpose : Assigns the number triples Row1, Row2, Row3 to the three
    	--   rows of this matrix.


  SetScale (me : in out; S : Real)     is static;
       ---C++: inline
       --- Purpose :
       --  Modifies the the matrix so that it represents 
       -- a scaling transformation, where S is the scale factor. :
       --           | S    0.0  0.0 |
       --   <me> =  | 0.0   S   0.0 |
       --           | 0.0  0.0   S  |

  SetValue (me : in out; Row, Col : Integer; Value : Real)
    	---C++: inline
        --- Purpose : Assigns <Value> to the coefficient of row Row, column Col of   this matrix.  
        -- Raises OutOfRange if Row < 1 or Row > 3 or Col < 1 or Col > 3
     raises OutOfRange
     is static;



  Column (me; Col : Integer)   returns XYZ
        --- Purpose : Returns the column of Col index.  
        --   Raises OutOfRange if Col < 1 or Col > 3
     raises OutOfRange
     is static;


  Determinant (me)   returns Real     is static;
    	---C++: inline
        --- Purpose : Computes the determinant of the matrix.


  Diagonal (me)  returns XYZ    is static;
        --- Purpose : Returns the main diagonal of the matrix.


  Row (me; Row : Integer)  returns XYZ
        --- Purpose : returns the row of Row index.  
        --  Raises OutOfRange if Row < 1 or Row > 3 
     raises OutOfRange
     is static;


  Value (me; Row, Col : Integer)  returns Real
        ---C++: inline
    	---C++: return const &
     	---C++: alias operator() 
        --- Purpose : Returns the coefficient of range (Row, Col)
	--  Raises OutOfRange if Row < 1 or Row > 3 or Col < 1 or Col > 3
     raises OutOfRange
     --
     is static;


  ChangeValue (me : in out; Row, Col : Integer)  returns Real
    	---C++: inline
    	---C++: return &
    	---C++: alias operator()   
        --- Purpose : Returns the coefficient of range (Row, Col)
        --  Raises OutOfRange if Row < 1 or Row > 3 or Col < 1 or Col > 3
     raises OutOfRange
     --
     is static;


  IsSingular (me)   returns Boolean   is static;
	---C++: inline
        --- Purpose :
        --  The Gauss LU decomposition is used to invert the matrix 
        --  (see Math package) so the matrix is considered as singular if
        --  the largest pivot found is lower or equal to Resolution from gp.





  Add (me : in out; Other : Mat)    is static;
    	---C++: inline
        ---C++: alias operator +=

  Added (me; Other : Mat)   returns Mat   is static;
    	---C++: inline
        ---C++: alias operator +
        --- Purpose : Computes the sum of this matrix and
        --  the matrix Other for each coefficient of the matrix :
        --  <me>.Coef(i,j) + <Other>.Coef(i,j)



     
  Divide (me : in out; Scalar : Real)    is static;
    	---C++: inline
        ---C++: alias operator /=

  Divided (me; Scalar : Real)   returns Mat     is static;
    	---C++: inline
        ---C++: alias operator /
        --- Purpose : Divides all the coefficients of the matrix by Scalar



    
  Invert (me : in out)   raises ConstructionError   is static;

  Inverted (me)  returns Mat    raises ConstructionError   is static;
        --- Purpose :
        --  Inverses the matrix and raises if the matrix is singular.
        -- -   Invert assigns the result to this matrix, while
        -- -   Inverted creates a new one.
        -- Warning
        -- The Gauss LU decomposition is used to invert the matrix.
        -- Consequently, the matrix is considered as singular if the
        -- largest pivot found is less than or equal to gp::Resolution().
        -- Exceptions
        -- Standard_ConstructionError if this matrix is singular,
        -- and therefore cannot be inverted.


  Multiplied (me; Other : Mat)   returns Mat    is static;
    	---C++: inline    
        ---C++: alias operator *
        --- Purpose :
        --  Computes  the product of two matrices <me> * <Other>

  Multiply (me : in out; Other : Mat)           is static;
    	---C++: inline
        ---C++: alias operator *=
    	---Purpose: Computes the product of two matrices <me> = <Other> * <me>.

  PreMultiply (me : in out; Other : Mat)        is static;
    	---C++: inline     
    	--Purpose : 
    	-- Modifies this matrix by premultiplying it by the matrix
    	-- Other:
    	-- this = Other * this
    	-- Computes the product of two matrices <me> = <Other> * <me>.
     
     
   

  Multiplied (me; Scalar : Real)   returns Mat    is static;
    	---C++: inline
        ---C++: alias operator *

  Multiply (me : in out; Scalar : Real)           is static;
    	---C++: inline
        ---C++: alias operator *=
     	--- Purpose :
        --  Multiplies all the coefficients of the matrix by Scalar

  Power (me : in out; N : Integer)   raises ConstructionError   is static;

  Powered (me; N : Integer)  returns Mat  raises ConstructionError  is static;
	---C++: inline
    	--- Purpose :
        --  Computes <me> = <me> * <me> * .......* <me>,   N time.
        --  if N = 0 <me> = Identity
        --  if N < 0 <me> = <me>.Invert() *...........* <me>.Invert().
        --  If N < 0 an exception will be raised if the matrix is not
        --  inversible

   

  Subtract (me : in out; Other : Mat)        is static;
      	---C++: inline
        ---C++: alias operator -=

  Subtracted (me; Other : Mat)  returns Mat  is static;
    	---C++: inline
        ---C++: alias operator -
     	--- Purpose :
        --  cOmputes for each coefficient of the matrix :
        --  <me>.Coef(i,j) - <Other>.Coef(i,j)

  Transpose (me : in out)        is static;
      	---C++: inline

  Transposed (me)  returns Mat   
      	---C++: inline
        --- Purpose : 
        --  Transposes the matrix. A(j, i) -> A (i, j)
     is static;

fields

  matrix : Real[3, 3];

friends
  class XYZ    from gp,
  class Trsf   from gp,
  class GTrsf  from gp

end;