1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
|
//============================================ IntAna2d_AnaIntersection_5.cxx
//============================================================================
#include <IntAna2d_AnaIntersection.jxx>
#include <IntAna2d_Outils.hxx>
void IntAna2d_AnaIntersection::Perform(const gp_Circ2d& Circle,
const IntAna2d_Conic& Conic)
{
Standard_Boolean CIsDirect = Circle.IsDirect();
Standard_Real A,B,C,D,E,F;
Standard_Real pcc,pss,p2sc,pc,ps,pcte;
Standard_Real radius=Circle.Radius();
Standard_Real radius_P2=radius*radius;
Standard_Integer i;
Standard_Real tx,ty,S;
done = Standard_False;
nbp = 0;
para = Standard_False;
empt = Standard_False;
iden = Standard_False;
gp_Ax2d Axe_rep(Circle.XAxis());
Conic.Coefficients(A,B,C,D,E,F);
Conic.NewCoefficients(A,B,C,D,E,F,Axe_rep);
// Parametre a avec x=Radius Cos(a) et y=Radius Sin(a)
pss = B*radius_P2;
pcc = A*radius_P2 - pss; // COS ^2
p2sc =C*radius_P2; // 2 SIN COS
pc = 2.0*D*radius; // COS
ps = 2.0*E*radius; // SIN
pcte= F + pss; // 1
math_TrigonometricFunctionRoots Sol(pcc,p2sc,pc,ps,pcte,0.0,2.0*PI);
if(!Sol.IsDone()) {
cout << "\n\nmath_TrigonometricFunctionRoots -> NotDone\n\n"<<endl;
done=Standard_False;
return;
}
else {
if(Sol.InfiniteRoots()) {
iden=Standard_True;
done=Standard_True;
return;
}
nbp=Sol.NbSolutions();
for(i=1;i<=nbp;i++) {
S = Sol.Value(i);
tx= radius*Cos(S);
ty= radius*Sin(S);
Coord_Ancien_Repere(tx,ty,Axe_rep);
if(!CIsDirect)
S = PI+PI-S;
lpnt[i-1].SetValue(tx,ty,S);
}
Traitement_Points_Confondus(nbp,lpnt);
}
done=Standard_True;
}
|