1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
|
-- File: GeomFill_UniformSection.cdl
-- Created: Fri Dec 5 10:52:23 1997
-- Author: Philippe MANGIN
-- <pmn@sgi29>
---Copyright: Matra Datavision 1997
class UniformSection from GeomFill inherits SectionLaw from GeomFill
---Purpose: Define an Constant Section Law
uses
Curve from Geom,
BSplineSurface from Geom,
BSplineCurve from Geom,
Shape from GeomAbs,
Pnt from gp,
Array1OfPnt from TColgp,
Array1OfVec from TColgp,
Array1OfInteger from TColStd,
Array1OfReal from TColStd
raises
OutOfRange
is
Create(C : Curve from Geom;
FirstParameter : Real = 0.0;
LastParameter : Real = 1.0)
---Purpose: Make an constant Law with C.
-- [First, Last] define law definition domain
returns UniformSection from GeomFill;
--
--========== To compute Sections and derivatives Sections
--
D0(me : mutable;
Param: Real;
Poles : out Array1OfPnt from TColgp;
Weigths : out Array1OfReal from TColStd)
---Purpose: compute the section for v = param
returns Boolean is redefined;
D1(me : mutable;
Param: Real;
Poles : out Array1OfPnt from TColgp;
DPoles : out Array1OfVec from TColgp;
Weigths : out Array1OfReal from TColStd;
DWeigths : out Array1OfReal from TColStd)
---Purpose: compute the first derivative in v direction of the
-- section for v = param
-- Warning : It used only for C1 or C2 aproximation
returns Boolean
is redefined;
D2(me : mutable;
Param: Real;
Poles : out Array1OfPnt from TColgp;
DPoles : out Array1OfVec from TColgp;
D2Poles : out Array1OfVec from TColgp;
Weigths : out Array1OfReal from TColStd;
DWeigths : out Array1OfReal from TColStd;
D2Weigths : out Array1OfReal from TColStd)
---Purpose: compute the second derivative in v direction of the
-- section for v = param
-- Warning : It used only for C2 aproximation
returns Boolean
is redefined;
BSplineSurface(me)
---Purpose: give if possible an bspline Surface, like iso-v are the
-- section. If it is not possible this methode have to
-- get an Null Surface. Is it the default implementation.
returns BSplineSurface from Geom
is redefined;
SectionShape(me; NbPoles : out Integer from Standard;
NbKnots : out Integer from Standard;
Degree : out Integer from Standard)
---Purpose: get the format of an section
is redefined;
Knots(me; TKnots: out Array1OfReal from TColStd)
---Purpose: get the Knots of the section
is redefined;
Mults(me; TMults: out Array1OfInteger from TColStd)
---Purpose: get the Multplicities of the section
is redefined;
IsRational(me)
---Purpose: Returns if the sections are rationnal or not
returns Boolean is redefined;
IsUPeriodic(me)
---Purpose: Returns if the sections are periodic or not
returns Boolean is redefined;
IsVPeriodic(me)
---Purpose: Returns if the law isperiodic or not
returns Boolean is redefined;
--
-- =================== Management of continuity ===================
--
NbIntervals(me; S : Shape from GeomAbs)
---Purpose: Returns the number of intervals for continuity
-- <S>.
-- May be one if Continuity(me) >= <S>
returns Integer is redefined;
Intervals(me; T : in out Array1OfReal from TColStd;
S : Shape from GeomAbs)
---Purpose: Stores in <T> the parameters bounding the intervals
-- of continuity <S>.
--
-- The array must provide enough room to accomodate
-- for the parameters. i.e. T.Length() > NbIntervals()
raises
OutOfRange from Standard
is redefined;
SetInterval(me: mutable; First, Last: Real from Standard)
---Purpose: Sets the bounds of the parametric interval on
-- the function
-- This determines the derivatives in these values if the
-- function is not Cn.
is redefined;
GetInterval(me; First, Last: out Real from Standard)
---Purpose: Gets the bounds of the parametric interval on
-- the function
is redefined;
GetDomain(me; First, Last: out Real from Standard)
---Purpose: Gets the bounds of the function parametric domain.
-- Warning: This domain it is not modified by the
-- SetValue method
is redefined;
-- ===================== To help computation of Tolerance ======
-- Evaluation of error, in 2d space, or on rational function, is
-- difficult. The following methods can help the approximation to
-- make good evaluation and use good tolerances.
--
-- It is not necessary for the following informations to be very
-- precise. A fast evaluation is sufficient.
GetTolerance(me;
BoundTol, SurfTol, AngleTol : Real;
Tol3d : out Array1OfReal)
---Purpose: Returns the tolerances associated at each poles to
-- reach in approximation, to satisfy: BoundTol error
-- at the Boundary AngleTol tangent error at the
-- Boundary (in radian) SurfTol error inside the
-- surface.
is redefined;
BarycentreOfSurf(me)
---Purpose: Get the barycentre of Surface.
-- An very poor estimation is sufficent.
-- This information is usefull to perform well
-- conditioned rational approximation.
-- Warning: Used only if <me> IsRational
returns Pnt from gp
is redefined;
MaximalSection(me) returns Real
---Purpose: Returns the length of the greater section. This
-- information is usefull to G1's control.
-- Warning: With an little value, approximation can be slower.
is redefined;
GetMinimalWeight(me; Weigths : out Array1OfReal from TColStd)
---Purpose: Compute the minimal value of weight for each poles
-- in all sections.
-- This information is usefull to control error
-- in rational approximation.
-- Warning: Used only if <me> IsRational
is redefined;
IsConstant(me; Error : out Real)
---Purpose: return True
returns Boolean
is redefined;
ConstantSection(me)
---Purpose: Return the constant Section if <me> IsConstant.
--
returns Curve from Geom
is redefined;
fields
First, Last : Real;
mySection : Curve from Geom;
myCurve : BSplineCurve from Geom;
end UniformSection;
|