1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
-- File: GeomFill_LocationLaw.cdl
-- Created: Thu Nov 20 17:53:46 1997
-- Author: Philippe MANGIN
-- <pmn@sgi29>
---Copyright: Matra Datavision 1997
deferred class LocationLaw from GeomFill inherits TShared from MMgt
---Purpose: To define location law in Sweeping location is --
-- defined by an Matrix M and an Vector V, and
-- transform an point P in MP+V.
uses
HCurve from Adaptor3d,
Mat from gp,
Vec from gp,
Pnt from gp,
Shape from GeomAbs,
Array1OfReal from TColStd,
Array1OfPnt2d from TColgp,
Array1OfVec2d from TColgp,
PipeError from GeomFill,
Shape from GeomAbs
raises
NotImplemented, OutOfRange
is
SetCurve(me : mutable; C : HCurve from Adaptor3d)
is deferred;
GetCurve(me)
returns HCurve from Adaptor3d
---C++: return const &
is deferred;
SetTrsf(me : mutable; Transfo : Mat from gp)
---Purpose: Set a transformation Matrix like the law M(t) become
-- Mat * M(t)
is deferred;
Copy(me)
returns LocationLaw from GeomFill
is deferred;
--
--========== To compute Location and derivatives Location
--
D0(me : mutable;
Param: Real;
M : out Mat from gp;
V : out Vec from gp)
---Purpose: compute Location
returns Boolean is deferred;
D0(me : mutable;
Param: Real;
M : out Mat from gp;
V : out Vec from gp;
Poles2d : out Array1OfPnt2d from TColgp)
---Purpose: compute Location and 2d points
returns Boolean is deferred;
D1(me : mutable;
Param: Real;
M : out Mat from gp;
V : out Vec from gp;
DM : out Mat from gp;
DV : out Vec from gp;
Poles2d : out Array1OfPnt2d from TColgp;
DPoles2d : out Array1OfVec2d from TColgp)
---Purpose: compute location 2d points and associated
-- first derivatives.
-- Warning : It used only for C1 or C2 aproximation
returns Boolean
raises NotImplemented
is virtual;
D2(me : mutable;
Param: Real;
M : out Mat from gp;
V : out Vec from gp;
DM : out Mat from gp;
DV : out Vec from gp;
D2M : out Mat from gp;
D2V : out Vec from gp;
Poles2d : out Array1OfPnt2d from TColgp;
DPoles2d : out Array1OfVec2d from TColgp;
D2Poles2d : out Array1OfVec2d from TColgp)
---Purpose: compute location 2d points and associated
-- first and seconde derivatives.
-- Warning : It used only for C2 aproximation
returns Boolean
raises NotImplemented
is virtual;
--
-- ================== General Information On The Function ==================
--
Nb2dCurves(me)
---Purpose: get the number of 2d curves (Restrictions + Traces)
-- to approximate.
returns Integer is static;
HasFirstRestriction(me)
---Purpose: Say if the first restriction is defined in this class.
-- If it is true the first element of poles array in
-- D0,D1,D2... Correspond to this restriction.
-- Returns Standard_False (default implementation)
returns Boolean
is virtual;
HasLastRestriction(me)
---Purpose: Say if the last restriction is defined in this class.
-- If it is true the last element of poles array in
-- D0,D1,D2... Correspond to this restriction.
-- Returns Standard_False (default implementation)
returns Boolean
is virtual;
TraceNumber(me)
---Purpose: Give the number of trace (Curves 2d wich are not restriction)
-- Returns 0 (default implementation)
returns Integer
is virtual;
ErrorStatus(me)
---Purpose:Give a status to the Law
-- Returns PipeOk (default implementation)
returns PipeError from GeomFill
is virtual;
--
-- =================== Management of continuity ===================
--
NbIntervals(me; S : Shape from GeomAbs)
---Purpose: Returns the number of intervals for continuity
-- <S>.
-- May be one if Continuity(me) >= <S>
returns Integer is deferred;
Intervals(me; T : in out Array1OfReal from TColStd;
S : Shape from GeomAbs)
---Purpose: Stores in <T> the parameters bounding the intervals
-- of continuity <S>.
--
-- The array must provide enough room to accomodate
-- for the parameters. i.e. T.Length() > NbIntervals()
raises
OutOfRange from Standard
is deferred;
SetInterval(me: mutable; First, Last: Real from Standard)
---Purpose: Sets the bounds of the parametric interval on
-- the function
-- This determines the derivatives in these values if the
-- function is not Cn.
is deferred;
GetInterval(me; First, Last: out Real from Standard)
---Purpose: Gets the bounds of the parametric interval on
-- the function
is deferred;
GetDomain(me; First, Last: out Real from Standard)
---Purpose: Gets the bounds of the function parametric domain.
-- Warning: This domain it is not modified by the
-- SetValue method
is deferred;
-- =================== To help computation of Tolerance ===============
--
-- Evaluation of error, in 2d space, or on composed function, is
-- difficult. The following methods can help the approximation to
-- make good evaluation and use good tolerances.
--
-- It is not necessary for the following informations to be very
-- precise. A fast evaluation is sufficient.
Resolution(me;
Index : Integer from Standard;
Tol : Real from Standard;
TolU, TolV : out Real from Standard)
---Purpose: Returns the resolutions in the sub-space 2d <Index>
-- This information is usfull to find an good tolerance in
-- 2d approximation.
---Warning: Used only if Nb2dCurve > 0
raises NotImplemented
is virtual;
SetTolerance(me : mutable; Tol3d, Tol2d : Real)
---Purpose: Is usefull, if (me) have to run numerical
-- algorithm to perform D0, D1 or D2
-- The default implementation make nothing.
is virtual;
GetMaximalNorm(me : mutable)
---Purpose: Get the maximum Norm of the matrix-location part. It
-- is usful to find an good Tolerance to approx M(t).
returns Real
is deferred;
GetAverageLaw(me : mutable;
AM: out Mat from gp;
AV: out Vec from gp)
---Purpose: Get average value of M(t) and V(t) it is usfull to
-- make fast approximation of rational surfaces.
is deferred;
--
-- To find elementary sweep
--
IsTranslation(me; Error : out Real)
---Purpose: Say if the Location Law, is an translation of Location
-- The default implementation is " returns False ".
returns Boolean
is virtual;
IsRotation(me; Error : out Real)
---Purpose: Say if the Location Law, is a rotation of Location
-- The default implementation is " returns False ".
returns Boolean
is virtual;
Rotation(me; Center : out Pnt from gp)
raises NotImplemented
is virtual;
end LocationLaw;
|