blob: 372dd13d6c33f4c29d26d4667bdc208f3d0164b2 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
|
-- File: GeomFill_Frenet.cdl
-- Created: Fri Dec 19 11:57:17 1997
-- Author: Philippe MANGIN
-- <pmn@sgi29>
---Copyright: Matra Datavision 1997
class Frenet from GeomFill
inherits TrihedronLaw from GeomFill
---Purpose: Defined Frenet Trihedron Law
uses
HCurve from Adaptor3d,
Shape from GeomAbs,
Array1OfReal from TColStd,
Pnt from gp,
Vec from gp,
HArray1OfReal from TColStd,
HArray1OfBoolean from TColStd
raises
OutOfRange, ConstructionError
is
Create
returns Frenet from GeomFill
raises ConstructionError;
Copy(me)
returns TrihedronLaw from GeomFill
is redefined;
Init(me: mutable)
is static;
SetCurve(me : mutable; C : HCurve from Adaptor3d)
is redefined;
--
--
--========== To compute Location and derivatives Location
--
D0(me : mutable;
Param: Real;
Tangent : out Vec from gp;
Normal : out Vec from gp;
BiNormal : out Vec from gp)
---Purpose: compute Triedrhon on curve at parameter <Param>
returns Boolean is redefined;
D1(me : mutable;
Param: Real;
Tangent : out Vec from gp;
DTangent : out Vec from gp;
Normal : out Vec from gp;
DNormal : out Vec from gp;
BiNormal : out Vec from gp;
DBiNormal : out Vec from gp)
---Purpose: compute Triedrhon and derivative Trihedron on curve
-- at parameter <Param>
-- Warning : It used only for C1 or C2 aproximation
returns Boolean
is redefined;
D2(me : mutable;
Param: Real;
Tangent : out Vec from gp;
DTangent : out Vec from gp;
D2Tangent : out Vec from gp;
Normal : out Vec from gp;
DNormal : out Vec from gp;
D2Normal : out Vec from gp;
BiNormal : out Vec from gp;
DBiNormal : out Vec from gp;
D2BiNormal : out Vec from gp)
---Purpose: compute Trihedron on curve
-- first and seconde derivatives.
-- Warning : It used only for C2 aproximation
returns Boolean
is redefined;
--
-- =================== Management of continuity ===================
--
NbIntervals(me; S : Shape from GeomAbs)
---Purpose: Returns the number of intervals for continuity
-- <S>.
-- May be one if Continuity(me) >= <S>
returns Integer is redefined;
Intervals(me; T : in out Array1OfReal from TColStd;
S : Shape from GeomAbs)
---Purpose: Stores in <T> the parameters bounding the intervals
-- of continuity <S>.
--
-- The array must provide enough room to accomodate
-- for the parameters. i.e. T.Length() > NbIntervals()
raises
OutOfRange from Standard
is redefined;
-- =================== To help computation of Tolerance ===============
GetAverageLaw(me : mutable;
ATangent : out Vec from gp;
ANormal : out Vec from gp;
ABiNormal : out Vec from gp)
---Purpose: Get average value of Tangent(t) and Normal(t) it is usfull to
-- make fast approximation of rational surfaces.
is redefined;
-- =================== To help Particular case ===============
IsConstant(me)
---Purpose: Say if the law is Constant.
returns Boolean
is redefined;
IsOnlyBy3dCurve(me)
---Purpose: Return True.
returns Boolean
is redefined;
IsSingular(me; U: Real; Index: out Integer)
returns Boolean
is private;
DoSingular(me: mutable; U: Real; Index: Integer;
Tangent, BiNormal: out Vec from gp;
n, k, TFlag, BNFlag: out Integer)
returns Boolean
is private;
SingularD0(me : mutable;
Param: Real; Index: Integer;
Tangent : out Vec from gp;
Normal : out Vec from gp;
BiNormal : out Vec from gp)
---Purpose: computes Triedrhon on curve at parameter <Param>
returns Boolean
is private;
SingularD1(me : mutable;
Param: Real; Index: Integer;
Tangent : out Vec from gp;
DTangent : out Vec from gp;
Normal : out Vec from gp;
DNormal : out Vec from gp;
BiNormal : out Vec from gp;
DBiNormal : out Vec from gp)
---Purpose: computes Triedrhon and derivative Trihedron on curve
-- at parameter <Param>
-- Warning : It used only for C1 or C2 aproximation
returns Boolean
is private;
SingularD2(me : mutable;
Param: Real; Index: Integer;
Tangent : out Vec from gp;
DTangent : out Vec from gp;
D2Tangent : out Vec from gp;
Normal : out Vec from gp;
DNormal : out Vec from gp;
D2Normal : out Vec from gp;
BiNormal : out Vec from gp;
DBiNormal : out Vec from gp;
D2BiNormal : out Vec from gp)
---Purpose: computes Trihedron on curve
-- first and seconde derivatives.
-- Warning : It used only for C2 aproximation
returns Boolean
is private;
fields
P : Pnt from gp;
mySngl : HArray1OfReal from TColStd;
mySnglLen : HArray1OfReal from TColStd;
isSngl : Boolean from Standard; -- True if there is some
-- singular points
end Frenet;
|