1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
|
-- File: GeomFill_CurveAndTrihedron.cdl
-- Created: Tue Dec 2 11:51:44 1997
-- Author: Philippe MANGIN
-- <pmn@sgi29>
---Copyright: Matra Datavision 1997
class CurveAndTrihedron from GeomFill
inherits LocationLaw from GeomFill
---Purpose: Define location law with an TrihedronLaw and an
-- curve
-- Definition Location is :
-- transformed section coordinates in (Curve(v)),
-- (Normal(v), BiNormal(v), Tangente(v))) systeme are
-- the same like section shape coordinates in
-- (O,(OX, OY, OZ)) systeme.
uses
TrihedronLaw from GeomFill,
HCurve from Adaptor3d,
Mat from gp,
Vec from gp,
Pnt from gp,
Array1OfReal from TColStd,
Array1OfPnt2d from TColgp,
Array1OfVec2d from TColgp,
Shape from GeomAbs
raises OutOfRange
is
Create(Trihedron : TrihedronLaw from GeomFill)
returns CurveAndTrihedron from GeomFill;
SetCurve(me : mutable; C : HCurve from Adaptor3d)
is redefined;
GetCurve(me)
returns HCurve from Adaptor3d
---C++: return const &
is redefined;
SetTrsf(me : mutable; Transfo : Mat from gp)
---Purpose: Set a transformation Matrix like the law M(t) become
-- Mat * M(t)
is redefined;
Copy(me)
returns LocationLaw from GeomFill
is redefined;
--
--========== To compute Location and derivatives Location
--
D0(me : mutable;
Param: Real;
M : out Mat from gp;
V : out Vec from gp)
---Purpose: compute Location and 2d points
returns Boolean is redefined;
D0(me : mutable;
Param: Real;
M : out Mat from gp;
V : out Vec from gp;
Poles2d : out Array1OfPnt2d from TColgp)
---Purpose: compute Location and 2d points
returns Boolean is redefined;
D1(me : mutable;
Param: Real;
M : out Mat from gp;
V : out Vec from gp;
DM : out Mat from gp;
DV : out Vec from gp;
Poles2d : out Array1OfPnt2d from TColgp;
DPoles2d : out Array1OfVec2d from TColgp)
---Purpose: compute location 2d points and associated
-- first derivatives.
-- Warning : It used only for C1 or C2 aproximation
returns Boolean
is redefined;
D2(me : mutable;
Param: Real;
M : out Mat from gp;
V : out Vec from gp;
DM : out Mat from gp;
DV : out Vec from gp;
D2M : out Mat from gp;
D2V : out Vec from gp;
Poles2d : out Array1OfPnt2d from TColgp;
DPoles2d : out Array1OfVec2d from TColgp;
D2Poles2d : out Array1OfVec2d from TColgp)
---Purpose: compute location 2d points and associated
-- first and seconde derivatives.
-- Warning : It used only for C2 aproximation
returns Boolean
is redefined;
--
-- =================== Management of continuity ===================
--
NbIntervals(me; S : Shape from GeomAbs)
---Purpose: Returns the number of intervals for continuity
-- <S>.
-- May be one if Continuity(me) >= <S>
returns Integer is redefined;
Intervals(me; T : in out Array1OfReal from TColStd;
S : Shape from GeomAbs)
---Purpose: Stores in <T> the parameters bounding the intervals
-- of continuity <S>.
--
-- The array must provide enough room to accomodate
-- for the parameters. i.e. T.Length() > NbIntervals()
raises
OutOfRange from Standard
is redefined;
SetInterval(me: mutable; First, Last: Real from Standard)
---Purpose: Sets the bounds of the parametric interval on
-- the function
-- This determines the derivatives in these values if the
-- function is not Cn.
is redefined;
GetInterval(me; First, Last: out Real from Standard)
---Purpose: Gets the bounds of the parametric interval on
-- the function
is redefined;
GetDomain(me; First, Last: out Real from Standard)
---Purpose: Gets the bounds of the function parametric domain.
-- Warning: This domain it is not modified by the
-- SetValue method
is redefined;
-- =================== To help computation of Tolerance ===============
--
-- Evaluation of error, in 2d space, or on composed function, is
-- difficult. The following methods can help the approximation to
-- make good evaluation and use good tolerances.
--
-- It is not necessary for the following informations to be very
-- precise. A fast evaluation is sufficient.
GetMaximalNorm(me : mutable)
---Purpose: Get the maximum Norm of the matrix-location part. It
-- is usful to find an good Tolerance to approx M(t).
returns Real
is redefined;
GetAverageLaw(me : mutable;
AM: out Mat from gp;
AV: out Vec from gp)
---Purpose: Get average value of M(t) and V(t) it is usfull to
-- make fast approximation of rational surfaces.
is redefined;
--
-- To find elementary sweep
--
IsTranslation(me; Error : out Real)
---Purpose: Say if the Location Law, is an translation of Location
-- The default implementation is " returns False ".
returns Boolean
is redefined;
IsRotation(me; Error : out Real )
---Purpose: Say if the Location Law, is a rotation of Location
-- The default implementation is " returns False ".
returns Boolean
is redefined;
Rotation(me; Center : out Pnt from gp)
is redefined;
fields
WithTrans: Boolean from Standard;
myLaw : TrihedronLaw from GeomFill;
myCurve : HCurve from Adaptor3d;
myTrimmed: HCurve from Adaptor3d;
Point : Pnt from gp;
V1, V2, V3 : Vec from gp;
Trans : Mat from gp;
end CurveAndTrihedron;
|