1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
-- File: Geom_Plane.cdl
-- Created: Wed Mar 10 09:58:36 1993
-- Author: JCV
-- <fid@phylox>
-- Copyright: Matra Datavision 1993
class Plane from Geom inherits ElementarySurface from Geom
---Purpose : Describes a plane in 3D space.
-- A plane is positioned in space by a coordinate system
-- (a gp_Ax3 object) such that the plane is defined by
-- the origin, "X Direction" and "Y Direction" of this
-- coordinate system.
-- This coordinate system is the "local coordinate
-- system" of the plane. The following apply:
-- - Its "X Direction" and "Y Direction" are respectively
-- the u and v parametric directions of the plane.
-- - Its origin is the origin of the u and v parameters
-- (also called the "origin" of the plane).
-- - Its "main Direction" is a vector normal to the plane.
-- This normal vector gives the orientation of the
-- plane only if the local coordinate system is "direct".
-- (The orientation of the plane is always defined by
-- the "X Direction" and the "Y Direction" of its local
-- coordinate system.)
-- The parametric equation of the plane is:
-- P(u, v) = O + u*XDir + v*YDir
-- where O, XDir and YDir are respectively the
-- origin, the "X Direction" and the "Y Direction" of the
-- local coordinate system of the plane.
-- The parametric range of the two parameters u and v
-- is ] -infinity, +infinity [.
uses Ax1 from gp,
Ax3 from gp,
Dir from gp,
Lin from gp,
Pln from gp,
Pnt from gp,
Trsf from gp,
Vec from gp,
GTrsf2d from gp,
Curve from Geom,
Geometry from Geom
raises ConstructionError from Standard,
RangeError from Standard
is
Create (A3 : Ax3) returns mutable Plane;
---Purpose :
-- Creates a plane located in 3D space with an axis placement
-- three axis. The "ZDirection" of "A3" is the direction normal
-- to the plane. The "Location" point of "A3" is the origin of
-- the plane. The "XDirection" and "YDirection" of "A3" define
-- the directions of the U isoparametric and V isoparametric
-- curves.
Create (Pl : Pln) returns mutable Plane;
---Purpose :
-- Creates a plane from a non transient plane from package gp.
Create (P : Pnt; V : Dir) returns mutable Plane;
---Purpose :
-- P is the "Location" point or origin of the plane.
-- V is the direction normal to the plane.
Create (A, B, C ,D : Real) returns mutable Plane
---Purpose :
-- Creates a plane from its cartesian equation :
-- Ax + By + Cz + D = 0.0
raises ConstructionError;
---Purpose :
-- Raised if Sqrt (A*A + B*B + C*C) <= Resolution from gp
SetPln (me : mutable; Pl : Pln);
---Purpose :
-- Set <me> so that <me> has the same geometric properties as Pl.
Pln (me) returns Pln
---Purpose : Converts this plane into a gp_Pln plane.
is static;
UReverse (me : mutable)
---Purpose :
-- Changes the orientation of this plane in the u (or v)
-- parametric direction. The bounds of the plane are not
-- changed but the given parametric direction is
-- reversed. Hence the orientation of the surface is reversed.
is redefined;
UReversedParameter (me; U : Real ) returns Real;
---Purpose: Computes the u parameter on the modified
-- plane, produced when reversing the u
-- parametric of this plane, for any point of u parameter U on this plane.
-- In the case of a plane, these methods return - -U.
VReverse (me : mutable)
---Purpose :
-- Changes the orientation of this plane in the u (or v)
-- parametric direction. The bounds of the plane are not
-- changed but the given parametric direction is
-- reversed. Hence the orientation of the surface is reversed.
is redefined;
VReversedParameter (me; V : Real ) returns Real;
---Purpose: Computes the v parameter on the modified
-- plane, produced when reversing the v
-- parametric of this plane, for any point of v parameter V on this plane.
-- In the case of a plane, these methods return -V.
TransformParameters(me; U,V : in out Real; T : Trsf from gp)
---Purpose: Computes the parameters on the transformed surface for
-- the transform of the point of parameters U,V on <me>.
-- me->Transformed(T)->Value(U',V')
-- is the same point as
-- me->Value(U,V).Transformed(T)
-- Where U',V' are the new values of U,V after calling
-- me->TranformParameters(U,V,T)
-- This methods multiplies U and V by T.ScaleFactor()
is redefined;
ParametricTransformation(me; T : Trsf from gp) returns GTrsf2d from gp
---Purpose: Returns a 2d transformation used to find the new
-- parameters of a point on the transformed surface.
-- me->Transformed(T)->Value(U',V')
-- is the same point as
-- me->Value(U,V).Transformed(T)
-- Where U',V' are obtained by transforming U,V with
-- th 2d transformation returned by
-- me->ParametricTransformation(T)
-- This methods returns a scale centered on the
-- origin with T.ScaleFactor
is redefined;
Bounds (me; U1, U2, V1, V2 : out Real);
---Purpose : Returns the parametric bounds U1, U2, V1 and V2 of this plane.
-- Because a plane is an infinite surface, the following is always true:
-- - U1 = V1 = Standard_Real::RealFirst()
-- - U2 = V2 = Standard_Real::RealLast().
Coefficients (me; A, B, C, D : out Real);
---Purpose :
-- Computes the normalized coefficients of the plane's
-- cartesian equation : Ax + By + Cz + D = 0.0
IsUClosed (me) returns Boolean;
---Purpose : return False
IsVClosed (me) returns Boolean;
---Purpose : return False
IsUPeriodic (me) returns Boolean;
---Purpose : return False.
IsVPeriodic (me) returns Boolean;
---Purpose : return False.
UIso (me; U : Real) returns mutable Curve;
---Purpose :
-- Computes the U isoparametric curve.
-- This is a Line parallel to the YAxis of the plane.
VIso (me; V : Real) returns mutable Curve;
---Purpose :
-- Computes the V isoparametric curve.
-- This is a Line parallel to the XAxis of the plane.
D0 (me; U, V : Real; P : out Pnt);
---Purpose :
-- Computes the point P (U, V) on <me>.
-- P = O + U * XDir + V * YDir.
-- where O is the "Location" point of the plane, XDir the
-- "XDirection" and YDir the "YDirection" of the plane's local
-- coordinate system.
D1 (me; U, V : Real; P : out Pnt; D1U, D1V : out Vec);
---Purpose :
-- Computes the current point and the first derivatives in the
-- directions U and V.
D2 (me; U, V : Real; P : out Pnt; D1U, D1V, D2U, D2V, D2UV : out Vec);
---Purpose :
-- Computes the current point, the first and the second
-- derivatives in the directions U and V.
D3 (me; U, V : Real; P : out Pnt;
D1U, D1V, D2U, D2V, D2UV, D3U, D3V, D3UUV, D3UVV :out Vec);
---Purpose :
-- Computes the current point, the first,the second and the
-- third derivatives in the directions U and V.
DN (me; U, V : Real; Nu, Nv : Integer) returns Vec
---Purpose :
-- Computes the derivative of order Nu in the direction u
-- and Nv in the direction v.
raises RangeError;
---Purpose : Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.
Transform (me : mutable; T : Trsf);
---Purpose: Applies the transformation T to this plane.
Copy (me) returns mutable like me;
---Purpose: Creates a new object which is a copy of this plane.
end;
|