1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
|
-- File: Circ2dTanOnRad.cdl
-- Created: Fri Mar 22 11:45:45 1991
-- Author: Philippe DAUTRY
-- <fid@phobox>
---Copyright: Matra Datavision 1991
class Circ2dTanOnRad
from GccAna
---Purpose: This class implements the algorithms used to
-- create a 2d circle tangent to a 2d entity,
-- centered on a curv and with a given radius.
-- The arguments of all construction methods are :
-- - The qualified element for the tangency constrains
-- (QualifiedCirc, QualifiedLin, Points).
-- - The Center element (circle, line).
-- - A real Tolerance.
-- Tolerance is only used in the limits cases.
-- For example :
-- We want to create a circle tangent to an OutsideCirc C1
-- centered on a line OnLine with a radius Radius and with
-- a tolerance Tolerance.
-- If we did not use Tolerance it is impossible to
-- find a solution in the the following case : OnLine is
-- outside C1. There is no intersection point between C1
-- and OnLine. The distance between the line and the
-- circle is greater than Radius.
-- With Tolerance we will give a solution if the
-- distance between C1 and OnLine is lower than or
-- equal Tolerance.
--inherits Storable from Standard
uses Pnt2d from gp,
Lin2d from gp,
Circ2d from gp,
QualifiedCirc from GccEnt,
QualifiedLin from GccEnt,
Array1OfReal from TColStd,
Array1OfInteger from TColStd,
Array1OfCirc2d from TColgp,
Array1OfPnt2d from TColgp,
Position from GccEnt,
Array1OfPosition from GccEnt
raises NegativeValue from Standard,
OutOfRange from Standard,
NotDone from StdFail,
BadQualifier from GccEnt
is
---Category: On a line ................................................
Create(Qualified1 : QualifiedCirc from GccEnt ;
OnLine : Lin2d from gp ;
Radius : Real from Standard;
Tolerance : Real from Standard) returns Circ2dTanOnRad
---Purpose: This methods implements the algorithms used to create
-- 2d Circles tangent to a circle and centered on a 2d Line
-- with a given radius.
-- Tolerance is used to find solution in every limit cases.
-- For example Tolerance is used in the case of EnclosedCirc when
-- Radius-R1+dist is greater Tolerance (dist is the distance
-- between the line and the location of the circ, R1 is the
-- radius of the circ) because there is no solution.
raises NegativeValue, BadQualifier;
---Purpose: raises NegativeValue in case of NegativeRadius.
Create(Qualified1 : QualifiedLin from GccEnt ;
OnLine : Lin2d from gp ;
Radius : Real from Standard;
Tolerance : Real from Standard) returns Circ2dTanOnRad
---Purpose: This methods implements the algorithms used to create
-- 2d Circles tangent to a 2d Line and centered on a 2d Line
-- with a given radius.
-- Tolerance is used to find solution in every limit cases.
raises NegativeValue, BadQualifier;
---Purpose: raises NegativeValue in case of NegativeRadius.
Create(Point1 : Pnt2d from gp ;
OnLine : Lin2d from gp ;
Radius : Real from Standard;
Tolerance : Real from Standard) returns Circ2dTanOnRad
---Purpose: This methods implements the algorithms used to create
-- 2d Circles passing through a 2d Point and centered on a
-- 2d Line with a given radius.
-- Tolerance is used to find solution in every limit cases.
raises NegativeValue;
-- raises NegativeValue in case of NegativeRadius.
---Category: On a circle ................................................
Create(Qualified1 : QualifiedCirc from GccEnt ;
OnCirc : Circ2d from gp ;
Radius : Real from Standard;
Tolerance : Real from Standard) returns Circ2dTanOnRad
---Purpose: This methods implements the algorithms used to create
-- 2d Circles tangent to a circle and centered on a 2d Circle
-- with a given radius.
-- Tolerance is used to find solution in every limit cases.
raises NegativeValue, BadQualifier;
---Purpose: raises NegativeValue in case of NegativeRadius.
Create(Qualified1 : QualifiedLin from GccEnt ;
OnCirc : Circ2d from gp ;
Radius : Real from Standard;
Tolerance : Real from Standard) returns Circ2dTanOnRad
---Purpose: This methods implements the algorithms used to create
-- 2d Circles tangent to a 2d Line and centered on a 2d Line
-- with a given radius.
-- Tolerance is used to find solution in every limit cases.
raises NegativeValue, BadQualifier;
---Purpose: raises NegativeValue in case of NegativeRadius.
Create(Point1 : Pnt2d from gp ;
OnCirc : Circ2d from gp ;
Radius : Real from Standard;
Tolerance : Real from Standard) returns Circ2dTanOnRad
---Purpose: This methods implements the algorithms used to create
-- 2d Circles passing through a 2d Point and centered on a
-- 2d Line with a given radius.
-- Tolerance is used to find solution in every limit cases.
raises NegativeValue;
---Purpose: raises NegativeValue in case of NegativeRadius.
-- -- ....................................................................
IsDone(me) returns Boolean from Standard
is static;
---Purpose: Returns true if the construction algorithm does not fail
-- (even if it finds no solution).
-- Note: IsDone protects against a failure arising from a
-- more internal intersection algorithm, which has
-- reached its numeric limits.
NbSolutions(me) returns Integer from Standard
---Purpose: This method returns the number of circles, representing solutions.
-- Raises NotDone if the construction algorithm didn't succeed.
raises NotDone
is static;
ThisSolution(me ;
Index : Integer from Standard) returns Circ2d from gp
---Purpose: Returns the solution number Index and raises OutOfRange
-- exception if Index is greater than the number of solutions.
-- Be careful: the Index is only a way to get all the
-- solutions, but is not associated to theses outside the
-- context of the algorithm-object.
-- Raises NotDone if the construction algorithm didn't succeed.
-- It raises OutOfRange if Index is greater than the
-- number of solutions
raises OutOfRange, NotDone
is static;
WhichQualifier(me ;
Index : Integer from Standard;
Qualif1 : out Position from GccEnt )
raises OutOfRange, NotDone
is static;
---Purpose: Returns the qualifier Qualif1 of the tangency argument
-- for the solution of index Index computed by this algorithm.
-- The returned qualifier is:
-- - that specified at the start of construction when the
-- solutions are defined as enclosed, enclosing or
-- outside with respect to the argument, or
-- - that computed during construction (i.e. enclosed,
-- enclosing or outside) when the solutions are defined
-- as unqualified with respect to the argument, or
-- - GccEnt_noqualifier if the tangency argument is a point.
-- Exceptions
-- Standard_OutOfRange if Index is less than zero or
-- greater than the number of solutions computed by this algorithm.
-- StdFail_NotDone if the construction fails.
Tangency1(me ;
Index : Integer from Standard;
ParSol,ParArg : out Real from Standard;
PntSol : out Pnt2d from gp )
---Purpose: Returns informations about the tangency point between the
-- result number Index and the first argument.
-- ParSol is the intrinsic parameter of the point on the
-- solution curv.
-- ParArg is the intrinsic parameter of the point on the
-- argument curv.
-- PntSol is the tangency point on the solution curv.
-- PntArg is the tangency point on the argument curv.
-- Raises NotDone if the construction algorithm didn't succeed.
-- It raises OutOfRange if Index is greater than the
-- number of solutions.
raises OutOfRange, NotDone
is static;
CenterOn3 (me ;
Index : Integer from Standard;
ParArg : out Real from Standard;
PntSol : out Pnt2d from gp )
---Purpose: Returns informations about the center (on the curv)
-- of the result.
-- ParArg is the intrinsic parameter of the point on
-- the argument curv.
-- PntSol is the center point of the solution curv.
-- Raises NotDone if the construction algorithm didn't succeed.
-- It raises OutOfRange if Index is greater than the
-- number of solutions.
raises OutOfRange, NotDone
is static;
IsTheSame1(me ;
Index : Integer from Standard) returns Boolean from Standard
---Purpose: Returns True if the solution number Index is equal to
-- the first argument and False in the other cases.
-- Raises NotDone if the construction algorithm didn't succeed.
-- It raises OutOfRange if Index is greater than the
-- number of solutions.
raises OutOfRange, NotDone
is static;
fields
WellDone : Boolean from Standard;
---Purpose: True if the algorithm succeeded.
NbrSol : Integer from Standard;
---Purpose: The number of possible solutions. We have to decide about the
-- status of the multiple solutions...
cirsol : Array1OfCirc2d from TColgp;
---Purpose : The solutions.
qualifier1 : Array1OfPosition from GccEnt;
-- The qualifiers of the first argument.
TheSame1 : Array1OfInteger from TColStd;
---Purpose: 1 if the solution and the first argument are the same in the
-- tolerance of Tolerance.
-- 0 in the other cases.
pnttg1sol : Array1OfPnt2d from TColgp;
---Purpose: The tangency point between the solution and the first
-- argument on the solution.
pntcen3 : Array1OfPnt2d from TColgp;
---Purpose: The center point of the solution on the first argument.
par1sol : Array1OfReal from TColStd;
---Purpose: The parameter of the tangency point between the solution
-- and the first argument on thesolution.
pararg1 : Array1OfReal from TColStd;
---Purpose: The parameter of the tangency point between the solution
-- and the first argument on the first argument.
parcen3 : Array1OfReal from TColStd;
---Purpose: The parameter of the center point of the solution on the
-- second argument.
end Circ2dTanOnRad;
|