1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
|
// File: GccAna_Circ2d2TanOn_10.cxx
// Created: Thu Jan 2 16:00:00 1992
// Author: Remi GILET
// <reg@topsn3>
#include <GccAna_Circ2d2TanOn.jxx>
#include <ElCLib.hxx>
#include <gp_Dir2d.hxx>
#include <gp_Ax2d.hxx>
#include <IntAna2d_AnaIntersection.hxx>
#include <IntAna2d_IntPoint.hxx>
#include <GccAna_LinPnt2dBisec.hxx>
#include <GccInt_IType.hxx>
#include <GccInt_Bisec.hxx>
#include <GccInt_BLine.hxx>
#include <IntAna2d_Conic.hxx>
#include <GccEnt_BadQualifier.hxx>
//=========================================================================
// Creation d un cercle tangent a une Droite L1 et a un point Point2. +
// centre sur un cercle. +
// Nous commencons par distinguer les differents cas limites que nous +
// allons traiter separement. +
// Pour le cas general: +
// ==================== +
// Nous calculons les bissectrices a L1 et Point2 qui nous donnent +
// l ensemble des lieux possibles des centres de tous les cercles +
// tangents a L1 et Point2. +
// Nous intersectons ces bissectrices avec le cerclee OnCirc ce qui nous +
// donne les points parmis lesquels nous allons choisir les solutions. +
// Les choix s effectuent a partir des Qualifieurs qualifiant L1. +
//=========================================================================
GccAna_Circ2d2TanOn::
GccAna_Circ2d2TanOn (const GccEnt_QualifiedLin& Qualified1 ,
const gp_Pnt2d& Point2 ,
const gp_Circ2d& OnCirc ,
const Standard_Real Tolerance ):
cirsol(1,4) ,
qualifier1(1,4) ,
qualifier2(1,4) ,
TheSame1(1,4) ,
TheSame2(1,4) ,
pnttg1sol(1,4) ,
pnttg2sol(1,4) ,
pntcen(1,4) ,
par1sol(1,4) ,
par2sol(1,4) ,
pararg1(1,4) ,
pararg2(1,4) ,
parcen3(1,4)
{
TheSame1.Init(0);
TheSame2.Init(0);
WellDone = Standard_False;
NbrSol = 0;
if (!(Qualified1.IsEnclosed() ||
Qualified1.IsOutside() || Qualified1.IsUnqualified())) {
GccEnt_BadQualifier::Raise();
return;
}
Standard_Real Tol = Abs(Tolerance);
gp_Dir2d dirx(1.,0.);
gp_Lin2d L1 = Qualified1.Qualified();
gp_Pnt2d originL1(L1.Location());
gp_Dir2d dirL1(L1.Direction());
gp_Dir2d normL1(-dirL1.Y(),dirL1.X());
//=========================================================================
// Traitement des cas limites. +
//=========================================================================
Standard_Real Ron = OnCirc.Radius();
Standard_Real distpc = OnCirc.Location().Distance(Point2);
gp_Dir2d dir(OnCirc.Location().XY()-Point2.XY());
gp_Pnt2d pinterm(Point2.XY()+(distpc+Ron)*dir.XY());
Standard_Real dist1 = L1.Distance(pinterm);
if (Abs(dist1-distpc+Ron) <= Tol) {
dir = gp_Dir2d(-dirL1.Y(),dirL1.X());
gp_Dir2d direc(originL1.XY()-pinterm.XY());
if (Qualified1.IsOutside()) {
if (direc.Dot(dir) >= 0.0) { WellDone = Standard_True; }
}
else if (Qualified1.IsEnclosed()) {
if (direc.Dot(dir) <= 0.0) { WellDone = Standard_True; }
}
else { WellDone = Standard_True; }
if (WellDone) {
NbrSol++;
cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(pinterm,dirx),dist1);
// =======================================================
gp_Dir2d dc1(originL1.XY()-pinterm.XY());
Standard_Real sign = dc1.Dot(normL1);
if (!Qualified1.IsUnqualified()) {
qualifier1(NbrSol) = Qualified1.Qualifier();
}
else if (dc1.Dot(normL1) > 0.0) { qualifier1(NbrSol) = GccEnt_outside; }
else { qualifier1(NbrSol) = GccEnt_enclosed; }
qualifier2(NbrSol) = GccEnt_noqualifier;
dc1 = gp_Dir2d(sign*gp_XY(-dirL1.Y(),dirL1.X()));
pnttg1sol(NbrSol) = gp_Pnt2d(pinterm.XY()+dist1*dc1.XY());
par1sol(NbrSol) = ElCLib::Parameter(cirsol(NbrSol),pnttg1sol(NbrSol));
pararg1(NbrSol)=ElCLib::Parameter(L1,pnttg1sol(NbrSol));
pntcen(NbrSol) = pinterm;
parcen3(NbrSol)=ElCLib::Parameter(OnCirc,pntcen(NbrSol));
parcen3(NbrSol) = 0.;
pnttg2sol(NbrSol) = Point2;
pararg2(NbrSol) = 0.;
par2sol(NbrSol) = ElCLib::Parameter(cirsol(NbrSol),pnttg2sol(NbrSol));
return;
}
}
//=========================================================================
// Cas general. +
//=========================================================================
GccAna_LinPnt2dBisec Bis(L1,Point2);
if (Bis.IsDone()) {
Handle(GccInt_Bisec) Sol = Bis.ThisSolution();
GccInt_IType type = Sol->ArcType();
IntAna2d_AnaIntersection Intp;
if (type == GccInt_Lin) {
Intp.Perform(Sol->Line(),OnCirc);
}
if (type == GccInt_Par) {
Intp.Perform(OnCirc,IntAna2d_Conic(Sol->Parabola()));
}
if (Intp.IsDone()) {
if (!Intp.IsEmpty()) {
for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
gp_Pnt2d Center(Intp.Point(j).Value());
Standard_Real Radius = L1.Distance(Center);
// Standard_Integer nbsol = 1;
Standard_Boolean ok = Standard_False;
if (Qualified1.IsEnclosed()) {
if ((((originL1.X()-Center.X())*(-dirL1.Y()))+
((originL1.Y()-Center.Y())*(dirL1.X())))<=0){
ok = Standard_True;
}
}
else if (Qualified1.IsOutside()) {
if ((((originL1.X()-Center.X())*(-dirL1.Y()))+
((originL1.Y()-Center.Y())*(dirL1.X())))>=0){
ok = Standard_True;
}
}
else if (Qualified1.IsUnqualified()) {
ok = Standard_True;
}
if (ok) {
NbrSol++;
cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius);
// =======================================================
TheSame1(NbrSol) = 0;
TheSame2(NbrSol) = 0;
gp_Dir2d dc1(originL1.XY()-Center.XY());
Standard_Real sign = dc1.Dot(normL1);
if (!Qualified1.IsUnqualified()) {
qualifier1(NbrSol) = Qualified1.Qualifier();
}
else if (dc1.Dot(normL1) > 0.0) {
qualifier1(NbrSol) = GccEnt_outside;
}
else { qualifier1(NbrSol) = GccEnt_enclosed; }
qualifier2(NbrSol) = GccEnt_noqualifier;
dc1=gp_Dir2d(sign*gp_XY(-dirL1.Y(),dirL1.X()));
pnttg1sol(NbrSol) = gp_Pnt2d(Center.XY()+dist1*dc1.XY());
par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
pnttg1sol(NbrSol));
pararg1(NbrSol)=ElCLib::Parameter(L1,pnttg1sol(NbrSol));
pntcen(NbrSol) = Center;
parcen3(NbrSol) = ElCLib::Parameter(OnCirc,pntcen(NbrSol));
pnttg2sol(NbrSol) = Point2;
pararg2(NbrSol) = 0.;
par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
pnttg2sol(NbrSol));
qualifier2(NbrSol) = GccEnt_noqualifier;
}
}
}
WellDone = Standard_True;
}
}
}
|