1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
|
// File: Approx_Curve3d.cxx
// Created: Thu Aug 20 18:33:15 1998
// Author: Philippe MANGIN
// <pmn@sgi29>
#include <Approx_Curve3d.ixx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <GeomAdaptor_HCurve.hxx>
#include <TColStd_HArray1OfReal.hxx>
#include <AdvApprox_PrefAndRec.hxx>
#include <AdvApprox_ApproxAFunction.hxx>
#include <TColgp_Array1OfPnt.hxx>
#include <Precision.hxx>
//=======================================================================
//class : Approx_Curve3d_Eval
//purpose: evaluator class for approximation
//=======================================================================
class Approx_Curve3d_Eval : public AdvApprox_EvaluatorFunction
{
public:
Approx_Curve3d_Eval (const Handle(Adaptor3d_HCurve)& theFunc,
Standard_Real First, Standard_Real Last)
: fonct(theFunc) { StartEndSav[0] = First; StartEndSav[1] = Last; }
virtual void Evaluate (Standard_Integer *Dimension,
Standard_Real StartEnd[2],
Standard_Real *Parameter,
Standard_Integer *DerivativeRequest,
Standard_Real *Result, // [Dimension]
Standard_Integer *ErrorCode);
private:
Handle(Adaptor3d_HCurve) fonct;
Standard_Real StartEndSav[2];
};
void Approx_Curve3d_Eval::Evaluate (Standard_Integer *Dimension,
Standard_Real StartEnd[2],
Standard_Real *Param, // Parameter at which evaluation
Standard_Integer *Order, // Derivative Request
Standard_Real *Result,// [Dimension]
Standard_Integer *ErrorCode)
{
*ErrorCode = 0;
Standard_Real par = *Param;
// Dimension is incorrect
if (*Dimension!=3) {
*ErrorCode = 1;
}
if(StartEnd[0] != StartEndSav[0] || StartEnd[1]!= StartEndSav[1])
{
fonct = fonct->Trim(StartEnd[0],StartEnd[1],Precision::PConfusion());
StartEndSav[0]=StartEnd[0];
StartEndSav[1]=StartEnd[1];
}
gp_Pnt pnt;
gp_Vec v1, v2;
switch (*Order) {
case 0:
pnt = fonct->Value(par);
Result[0] = pnt.X();
Result[1] = pnt.Y();
Result[2] = pnt.Z();
break;
case 1:
fonct->D1(par, pnt, v1);
Result[0] = v1.X();
Result[1] = v1.Y();
Result[2] = v1.Z();
break;
case 2:
fonct->D2(par, pnt, v1, v2);
Result[0] = v2.X();
Result[1] = v2.Y();
Result[2] = v2.Z();
break;
default:
Result[0] = Result[1] = Result[2] = 0.;
*ErrorCode = 3;
break;
}
}
Approx_Curve3d::Approx_Curve3d(const Handle(Adaptor3d_HCurve)& Curve,
const Standard_Real Tol3d,
const GeomAbs_Shape Order,
const Standard_Integer MaxSegments,
const Standard_Integer MaxDegree)
{
// Initialisation of input parameters of AdvApprox
Standard_Integer Num1DSS=0, Num2DSS=0, Num3DSS=1;
Handle(TColStd_HArray1OfReal) OneDTolNul, TwoDTolNul;
Handle(TColStd_HArray1OfReal) ThreeDTol =
new TColStd_HArray1OfReal(1,Num3DSS);
ThreeDTol->Init(Tol3d);
Standard_Real First = Curve->FirstParameter();
Standard_Real Last = Curve->LastParameter();
Standard_Integer NbInterv_C2 = Curve->NbIntervals(GeomAbs_C2);
TColStd_Array1OfReal CutPnts_C2(1, NbInterv_C2+1);
Curve->Intervals(CutPnts_C2,GeomAbs_C2);
Standard_Integer NbInterv_C3 = Curve->NbIntervals(GeomAbs_C3);
TColStd_Array1OfReal CutPnts_C3(1, NbInterv_C3+1);
Curve->Intervals(CutPnts_C3,GeomAbs_C3);
AdvApprox_PrefAndRec CutTool(CutPnts_C2,CutPnts_C3);
myMaxError = 0;
Approx_Curve3d_Eval ev (Curve, First, Last);
AdvApprox_ApproxAFunction aApprox (Num1DSS, Num2DSS, Num3DSS,
OneDTolNul, TwoDTolNul, ThreeDTol,
First, Last, Order,
MaxDegree, MaxSegments,
ev, CutTool);
myIsDone = aApprox.IsDone();
myHasResult = aApprox.HasResult();
if (myHasResult) {
TColgp_Array1OfPnt Poles(1,aApprox.NbPoles());
aApprox.Poles(1,Poles);
Handle(TColStd_HArray1OfReal) Knots = aApprox.Knots();
Handle(TColStd_HArray1OfInteger) Mults = aApprox.Multiplicities();
Standard_Integer Degree = aApprox.Degree();
myBSplCurve = new Geom_BSplineCurve(Poles, Knots->Array1(), Mults->Array1(), Degree);
myMaxError = aApprox.MaxError(3, 1);
}
}
Handle(Geom_BSplineCurve) Approx_Curve3d::Curve() const
{
return myBSplCurve;
}
Standard_Boolean Approx_Curve3d::IsDone() const
{
return myIsDone;
}
Standard_Boolean Approx_Curve3d::HasResult() const
{
return myHasResult;
}
Standard_Real Approx_Curve3d::MaxError() const
{
return myMaxError;
}
void Approx_Curve3d::Dump(Standard_OStream& o) const
{
o << "******* Dump of ApproxCurve *******" << endl;
o << "*******Degree " << Curve()->Degree() << endl;
o << "*******NbSegments " << Curve()->NbKnots() - 1 << endl;
o << "*******Error " << MaxError() << endl;
}
|