1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
-- File: Gradient.cdl
-- Created: Thu Jul 25 17:06:33 1991
-- Author: Laurent PAINNOT
-- <lpa@topsn3>
---Copyright: Matra Datavision 1991, 1992
generic class Gradient from AppParCurves
(MultiLine as any;
ToolLine as any) -- as ToolLine(MultiLine)
---Purpose: This algorithm uses the algorithms LeastSquare,
-- ResConstraint and a gradient method to approximate a set
-- of points (AppDef_MultiLine) with a minimization of the
-- sum(square(|F(i)-Qi|)) by changing the parameter.
-- The algorithm used is from of the mathematical
-- package: math_BFGS, a gradient method.
uses Vector from math,
MultipleVarFunctionWithGradient from math,
MultiCurve from AppParCurves,
HArray1OfConstraintCouple from AppParCurves
raises OutOfRange from Standard,
NotDone from StdFail
private class ParLeastSquare instantiates LeastSquare from AppParCurves
(MultiLine, ToolLine);
private class ResConstraint instantiates ResolConstraint from AppParCurves
(MultiLine, ToolLine);
private class ParFunction instantiates Function from AppParCurves
(MultiLine, ToolLine, ParLeastSquare, ResConstraint);
class Gradient_BFGS from AppParCurves
inherits BFGS from math
uses MultipleVarFunctionWithGradient from math,
Vector from math
is
Create ( F : in out MultipleVarFunctionWithGradient from math ;
StartingPoint : Vector from math ;
Tolerance3d : Real from Standard ;
Tolerance2d : Real from Standard ;
Eps : Real from Standard ;
NbIterations : Integer from Standard = 200 );
IsSolutionReached ( me ;
F : in out MultipleVarFunctionWithGradient from math )
returns Boolean from Standard is redefined ;
fields
myTol3d : Real from Standard ;
myTol2d : Real from Standard ;
end Gradient_BFGS from AppParCurves ;
is
Create(SSP: MultiLine; FirstPoint, LastPoint: Integer;
TheConstraints: HArray1OfConstraintCouple;
Parameters: in out Vector; Deg: Integer;
Tol3d, Tol2d: Real; NbIterations: Integer = 200)
---Purpose: Tries to minimize the sum (square(||Qui - Bi*Pi||))
-- where Pui describe the approximating Bezier curves'Poles
-- and Qi the MultiLine points with a parameter ui.
-- In this algorithm, the parameters ui are the unknowns.
-- The tolerance required on this sum is given by Tol.
-- The desired degree of the resulting curve is Deg.
returns Gradient from AppParCurves;
IsDone(me)
---Purpose: returns True if all has been correctly done.
returns Boolean
is static;
Value(me)
---Purpose: returns all the Bezier curves approximating the
-- MultiLine SSP after minimization of the parameter.
returns MultiCurve from AppParCurves
raises NotDone from StdFail
is static;
Error(me; Index: Integer)
---Purpose: returns the difference between the old and the new
-- approximation.
-- An exception is raised if NotDone.
-- An exception is raised if Index<1 or Index>NbParameters.
returns Real
raises NotDone from StdFail,
OutOfRange from Standard
is static;
MaxError3d(me)
---Purpose: returns the maximum difference between the old and the
-- new approximation.
returns Real
raises NotDone from StdFail
is static;
MaxError2d(me)
---Purpose: returns the maximum difference between the old and the
-- new approximation.
returns Real
raises NotDone from StdFail
is static;
AverageError(me)
---Purpose: returns the average error between the old and the
-- new approximation.
returns Real
raises NotDone from StdFail
is static;
fields
SCU: MultiCurve from AppParCurves;
ParError: Vector from math;
AvError: Real;
MError3d: Real;
MError2d: Real;
Done: Boolean;
end Gradient from AppParCurves;
|