blob: 7e05f38f1efa990d3530ac08b9106f4926d19690 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
|
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _Law_BSplineKnotSplitting_HeaderFile
#define _Law_BSplineKnotSplitting_HeaderFile
#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif
#ifndef _Handle_TColStd_HArray1OfInteger_HeaderFile
#include <Handle_TColStd_HArray1OfInteger.hxx>
#endif
#ifndef _Handle_Law_BSpline_HeaderFile
#include <Handle_Law_BSpline.hxx>
#endif
#ifndef _Standard_Integer_HeaderFile
#include <Standard_Integer.hxx>
#endif
class TColStd_HArray1OfInteger;
class Standard_DimensionError;
class Standard_RangeError;
class Law_BSpline;
class TColStd_Array1OfInteger;
//! For a B-spline curve the discontinuities are localised at the <br>
//! knot values and between two knots values the B-spline is <br>
//! infinitely continuously differentiable. <br>
//! At a knot of range index the continuity is equal to : <br>
//! Degree - Mult (Index) where Degree is the degree of the <br>
//! basis B-spline functions and Mult the multiplicity of the knot <br>
//! of range Index. <br>
//! If for your computation you need to have B-spline curves with a <br>
//! minima of continuity it can be interesting to know between which <br>
//! knot values, a B-spline curve arc, has a continuity of given order. <br>
//! This algorithm computes the indexes of the knots where you should <br>
//! split the curve, to obtain arcs with a constant continuity given <br>
//! at the construction time. The splitting values are in the range <br>
//! [FirstUKnotValue, LastUKnotValue] (See class B-spline curve from <br>
//! package Geom). <br>
//! If you just want to compute the local derivatives on the curve you <br>
//! don't need to create the B-spline curve arcs, you can use the <br>
//! functions LocalD1, LocalD2, LocalD3, LocalDN of the class <br>
//! BSplineCurve. <br>
class Law_BSplineKnotSplitting {
public:
void* operator new(size_t,void* anAddress)
{
return anAddress;
}
void* operator new(size_t size)
{
return Standard::Allocate(size);
}
void operator delete(void *anAddress)
{
if (anAddress) Standard::Free((Standard_Address&)anAddress);
}
//! Locates the knot values which correspond to the segmentation of <br>
//! the curve into arcs with a continuity equal to ContinuityRange. <br>
//! Raised if ContinuityRange is not greater or equal zero. <br>
Standard_EXPORT Law_BSplineKnotSplitting(const Handle(Law_BSpline)& BasisLaw,const Standard_Integer ContinuityRange);
//! Returns the number of knots corresponding to the splitting. <br>
Standard_EXPORT Standard_Integer NbSplits() const;
//! Returns the indexes of the BSpline curve knots corresponding to <br>
//! the splitting. <br>
//! Raised if the length of SplitValues is not equal to NbSPlit. <br>
Standard_EXPORT void Splitting(TColStd_Array1OfInteger& SplitValues) const;
//! Returns the index of the knot corresponding to the splitting <br>
//! of range Index. <br>
//! Raised if Index < 1 or Index > NbSplits <br>
Standard_EXPORT Standard_Integer SplitValue(const Standard_Integer Index) const;
protected:
private:
Handle_TColStd_HArray1OfInteger splitIndexes;
};
// other Inline functions and methods (like "C++: function call" methods)
#endif
|