1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
|
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _Geom_Ellipse_HeaderFile
#define _Geom_Ellipse_HeaderFile
#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_DefineHandle_HeaderFile
#include <Standard_DefineHandle.hxx>
#endif
#ifndef _Handle_Geom_Ellipse_HeaderFile
#include <Handle_Geom_Ellipse.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Geom_Conic_HeaderFile
#include <Geom_Conic.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _Standard_Integer_HeaderFile
#include <Standard_Integer.hxx>
#endif
#ifndef _Handle_Geom_Geometry_HeaderFile
#include <Handle_Geom_Geometry.hxx>
#endif
class Standard_ConstructionError;
class Standard_RangeError;
class gp_Elips;
class gp_Ax2;
class gp_Ax1;
class gp_Pnt;
class gp_Vec;
class gp_Trsf;
class Geom_Geometry;
//! Describes an ellipse in 3D space. <br>
//! An ellipse is defined by its major and minor radii and, <br>
//! as with any conic curve, is positioned in space with a <br>
//! right-handed coordinate system (gp_Ax2 object) where: <br>
//! - the origin is the center of the ellipse, <br>
//! - the "X Direction" defines the major axis, and <br>
//! - the "Y Direction" defines the minor axis. <br>
//! The origin, "X Direction" and "Y Direction" of this <br>
//! coordinate system define the plane of the ellipse. The <br>
//! coordinate system is the local coordinate system of the ellipse. <br>
//! The "main Direction" of this coordinate system is the <br>
//! vector normal to the plane of the ellipse. The axis, of <br>
//! which the origin and unit vector are respectively the <br>
//! origin and "main Direction" of the local coordinate <br>
//! system, is termed the "Axis" or "main Axis" of the ellipse. <br>
//! The "main Direction" of the local coordinate system <br>
//! gives an explicit orientation to the ellipse (definition of <br>
//! the trigonometric sense), determining the direction in <br>
//! which the parameter increases along the ellipse. <br>
//! The Geom_Ellipse ellipse is parameterized by an angle: <br>
//! P(U) = O + MajorRad*Cos(U)*XDir + MinorRad*Sin(U)*YDir <br>
//! where: <br>
//! - P is the point of parameter U, <br>
//! - O, XDir and YDir are respectively the origin, "X <br>
//! Direction" and "Y Direction" of its local coordinate system, <br>
//! - MajorRad and MinorRad are the major and minor radii of the ellipse. <br>
//! The "X Axis" of the local coordinate system therefore <br>
//! defines the origin of the parameter of the ellipse. <br>
//! An ellipse is a closed and periodic curve. The period <br>
//! is 2.*Pi and the parameter range is [ 0, 2.*Pi [. <br>
class Geom_Ellipse : public Geom_Conic {
public:
//! Constructs an ellipse by conversion of the gp_Elips ellipse E. <br>
Standard_EXPORT Geom_Ellipse(const gp_Elips& E);
//! Constructs an ellipse <br>
//! defined by its major and minor radii, MajorRadius <br>
//! and MinorRadius, where A2 locates the ellipse <br>
//! and defines its orientation in 3D space such that: <br>
//! - the center of the ellipse is the origin of A2, <br>
//! - the "X Direction" of A2 defines the major axis <br>
//! of the ellipse, i.e. the major radius <br>
//! MajorRadius is measured along this axis, <br>
//! - the "Y Direction" of A2 defines the minor axis <br>
//! of the ellipse, i.e. the minor radius <br>
//! MinorRadius is measured along this axis, <br>
//! - A2 is the local coordinate system of the ellipse. <br>
//! Exceptions <br>
//! Standard_ConstructionError if: <br>
//! - MajorRadius is less than MinorRadius, or <br>
//! - MinorRadius is less than 0. <br>
//! Warning The Geom package does not prevent the <br>
//! construction of an ellipse where MajorRadius and <br>
//! MinorRadius are equal. <br>
Standard_EXPORT Geom_Ellipse(const gp_Ax2& A2,const Standard_Real MajorRadius,const Standard_Real MinorRadius);
//! Converts the gp_Elips ellipse E into this ellipse. <br>
Standard_EXPORT void SetElips(const gp_Elips& E) ;
//! Assigns a value to the major radius of this ellipse. <br>
//! ConstructionError raised if MajorRadius < MinorRadius. <br>
Standard_EXPORT void SetMajorRadius(const Standard_Real MajorRadius) ;
//! Assigns a value to the minor radius of this ellipse. <br>
//! ConstructionError raised if MajorRadius < MinorRadius or if MinorRadius < 0. <br>
Standard_EXPORT void SetMinorRadius(const Standard_Real MinorRadius) ;
//! returns the non transient ellipse from gp with the same <br>
Standard_EXPORT gp_Elips Elips() const;
//! Computes the parameter on the reversed ellipse for <br>
//! the point of parameter U on this ellipse. <br>
//! For an ellipse, the returned value is: 2.*Pi - U. <br>
Standard_EXPORT Standard_Real ReversedParameter(const Standard_Real U) const;
//! This directrix is the line normal to the XAxis of the ellipse <br>
//! in the local plane (Z = 0) at a distance d = MajorRadius / e <br>
//! from the center of the ellipse, where e is the eccentricity of <br>
//! the ellipse. <br>
//! This line is parallel to the "YAxis". The intersection point <br>
//! between directrix1 and the "XAxis" is the "Location" point <br>
//! of the directrix1. This point is on the positive side of <br>
//! the "XAxis". <br>//! Raised if Eccentricity = 0.0. (The ellipse degenerates <br>
//! into a circle) <br>
Standard_EXPORT gp_Ax1 Directrix1() const;
//! This line is obtained by the symmetrical transformation <br>
//! of "Directrix1" with respect to the "YAxis" of the ellipse. <br>
//! Raised if Eccentricity = 0.0. (The ellipse degenerates into a <br>
//! circle). <br>
Standard_EXPORT gp_Ax1 Directrix2() const;
//! Returns the eccentricity of the ellipse between 0.0 and 1.0 <br>
//! If f is the distance between the center of the ellipse and <br>
//! the Focus1 then the eccentricity e = f / MajorRadius. <br>
//! Returns 0 if MajorRadius = 0 <br>
Standard_EXPORT Standard_Real Eccentricity() const;
//! Computes the focal distance. It is the distance between the <br>
//! the two focus of the ellipse. <br>
Standard_EXPORT Standard_Real Focal() const;
//! Returns the first focus of the ellipse. This focus is on the <br>
//! positive side of the "XAxis" of the ellipse. <br>
Standard_EXPORT gp_Pnt Focus1() const;
//! Returns the second focus of the ellipse. This focus is on <br>
//! the negative side of the "XAxis" of the ellipse. <br>
Standard_EXPORT gp_Pnt Focus2() const;
//! Returns the major radius of this ellipse. <br>
Standard_EXPORT Standard_Real MajorRadius() const;
//! Returns the minor radius of this ellipse. <br>
Standard_EXPORT Standard_Real MinorRadius() const;
//! Returns p = (1 - e * e) * MajorRadius where e is the eccentricity <br>
//! of the ellipse. <br>
//! Returns 0 if MajorRadius = 0 <br>
Standard_EXPORT Standard_Real Parameter() const;
//! Returns the value of the first parameter of this <br>
//! ellipse. This is respectively: <br>
//! - 0.0, which gives the start point of this ellipse, or <br>
//! The start point and end point of an ellipse are coincident. <br>
Standard_EXPORT Standard_Real FirstParameter() const;
//! Returns the value of the last parameter of this <br>
//! ellipse. This is respectively: <br>
//! - 2.*Pi, which gives the end point of this ellipse. <br>
//! The start point and end point of an ellipse are coincident. <br>
Standard_EXPORT Standard_Real LastParameter() const;
//! return True. <br>
Standard_EXPORT Standard_Boolean IsClosed() const;
//! return True. <br>
Standard_EXPORT Standard_Boolean IsPeriodic() const;
//! Returns in P the point of parameter U. <br>
//! P = C + MajorRadius * Cos (U) * XDir + MinorRadius * Sin (U) * YDir <br>
//! where C is the center of the ellipse , XDir the direction of <br>
//! the "XAxis" and "YDir" the "YAxis" of the ellipse. <br>
Standard_EXPORT void D0(const Standard_Real U,gp_Pnt& P) const;
Standard_EXPORT void D1(const Standard_Real U,gp_Pnt& P,gp_Vec& V1) const;
//! Returns the point P of parameter U. The vectors V1 and V2 <br>
//! are the first and second derivatives at this point. <br>
Standard_EXPORT void D2(const Standard_Real U,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2) const;
//! Returns the point P of parameter U, the first second and <br>
//! third derivatives V1 V2 and V3. <br>
Standard_EXPORT void D3(const Standard_Real U,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2,gp_Vec& V3) const;
//! For the point of parameter U of this ellipse, computes <br>
//! the vector corresponding to the Nth derivative. <br>
//! Exceptions Standard_RangeError if N is less than 1. <br>
Standard_EXPORT gp_Vec DN(const Standard_Real U,const Standard_Integer N) const;
//! Applies the transformation T to this ellipse. <br>
Standard_EXPORT void Transform(const gp_Trsf& T) ;
//! Creates a new object which is a copy of this ellipse. <br>
Standard_EXPORT Handle_Geom_Geometry Copy() const;
DEFINE_STANDARD_RTTI(Geom_Ellipse)
protected:
private:
Standard_Real majorRadius;
Standard_Real minorRadius;
};
// other Inline functions and methods (like "C++: function call" methods)
#endif
|