summaryrefslogtreecommitdiff
path: root/inc/Geom_Curve.hxx
blob: 60da5deaaee394a985a77fa26418181800342797 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to 
// this header file considered to be the "object code" form of the original source.

#ifndef _Geom_Curve_HeaderFile
#define _Geom_Curve_HeaderFile

#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_DefineHandle_HeaderFile
#include <Standard_DefineHandle.hxx>
#endif
#ifndef _Handle_Geom_Curve_HeaderFile
#include <Handle_Geom_Curve.hxx>
#endif

#ifndef _Geom_Geometry_HeaderFile
#include <Geom_Geometry.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _GeomAbs_Shape_HeaderFile
#include <GeomAbs_Shape.hxx>
#endif
#ifndef _Standard_Integer_HeaderFile
#include <Standard_Integer.hxx>
#endif
class Standard_RangeError;
class Standard_NoSuchObject;
class Geom_UndefinedDerivative;
class Geom_UndefinedValue;
class gp_Trsf;
class gp_Pnt;
class gp_Vec;


//! The abstract class Curve describes the common <br>
//! behavior of curves in 3D space. The Geom package <br>
//! provides numerous concrete classes of derived <br>
//! curves, including lines, circles, conics, Bezier or <br>
//! BSpline curves, etc. <br>
//! The main characteristic of these curves is that they <br>
//! are parameterized. The Geom_Curve class shows: <br>
//! - how to work with the parametric equation of a curve <br>
//!   in order to calculate the point of parameter u, <br>
//!   together with the vector tangent and the derivative <br>
//!   vectors of order 2, 3,..., N at this point; <br>
//! - how to obtain general information about the curve <br>
//!   (for example, level of continuity, closed <br>
//!   characteristics, periodicity, bounds of the parameter field); <br>
//! - how the parameter changes when a geometric <br>
//!   transformation is applied to the curve or when the <br>
//!   orientation of the curve is inverted. <br>
//!   All curves must have a geometric continuity: a curve is <br>
//!   at least "C0". Generally, this property is checked at <br>
//! the time of construction or when the curve is edited. <br>
//! Where this is not the case, the documentation states so explicitly. <br>
//! Warning <br>
//! The Geom package does not prevent the <br>
//! construction of curves with null length or curves which <br>
//! self-intersect. <br>
class Geom_Curve : public Geom_Geometry {

public:

  
//!  Changes the direction of parametrization of <me>. <br>
//!  The "FirstParameter" and the "LastParameter" are not changed <br>
//!  but the orientation  of the curve is modified. If the curve <br>
//!  is bounded the StartPoint of the initial curve becomes the <br>
//!  EndPoint of the reversed curve  and the EndPoint of the initial <br>
//!  curve becomes the StartPoint of the reversed curve. <br>
  Standard_EXPORT   virtual  void Reverse()  = 0;
  //! Returns the  parameter on the  reversed  curve for <br>
//!          the point of parameter U on <me>. <br>
//! <br>
//!          me->Reversed()->Value(me->ReversedParameter(U)) <br>
//! <br>
//!          is the same point as <br>
//! <br>
//!          me->Value(U) <br>
  Standard_EXPORT   virtual  Standard_Real ReversedParameter(const Standard_Real U) const = 0;
  //! Returns the  parameter on the  transformed  curve for <br>
//!          the transform of the point of parameter U on <me>. <br>
//! <br>
//!          me->Transformed(T)->Value(me->TransformedParameter(U,T)) <br>
//! <br>
//!          is the same point as <br>
//! <br>
//!          me->Value(U).Transformed(T) <br>
//! <br>
//!          This methods returns <U> <br>
//! <br>
//!          It can be redefined. For example on the Line. <br>
  Standard_EXPORT   virtual  Standard_Real TransformedParameter(const Standard_Real U,const gp_Trsf& T) const;
  //! Returns a  coefficient to compute the parameter on <br>
//!          the transformed  curve  for  the transform  of the <br>
//!          point on <me>. <br>
//! <br>
//!          Transformed(T)->Value(U * ParametricTransformation(T)) <br>
//! <br>
//!          is the same point as <br>
//! <br>
//!          Value(U).Transformed(T) <br>
//! <br>
//!          This methods returns 1. <br>
//! <br>
//!          It can be redefined. For example on the Line. <br>
  Standard_EXPORT   virtual  Standard_Real ParametricTransformation(const gp_Trsf& T) const;
  //! Returns a copy of <me> reversed. <br>
  Standard_EXPORT     Handle_Geom_Curve Reversed() const;
  //! Returns the value of the first parameter. <br>
//!  Warnings : <br>
//!  It can be RealFirst from package Standard <br>
//!  if the curve is infinite <br>
  Standard_EXPORT   virtual  Standard_Real FirstParameter() const = 0;
  //!  Returns the value of the last parameter. <br>
//!  Warnings : <br>
//!  It can be RealLast from package Standard <br>
//!  if the curve is infinite <br>
  Standard_EXPORT   virtual  Standard_Real LastParameter() const = 0;
  //! Returns true if the curve is closed. <br>
//!  Some curves such as circle are always closed, others such as line <br>
//!  are never closed (by definition). <br>
//!  Some Curves such as OffsetCurve can be closed or not. These curves <br>
//!  are considered as closed if the distance between the first point <br>
//!  and the last point of the curve is lower or equal to the Resolution <br>
//!  from package gp wich is a fixed criterion independant of the <br>
//!  application. <br>
  Standard_EXPORT   virtual  Standard_Boolean IsClosed() const = 0;
  //! Is the parametrization of the curve periodic ? <br>
//!  It is possible only if the curve is closed and if the <br>
//!  following relation is satisfied : <br>
//!  for each parametric value U the distance between the point <br>
//!  P(u) and the point P (u + T) is lower or equal to Resolution <br>
//!  from package gp, T is the period and must be a constant. <br>
//!  There are three possibilities : <br>
//!   . the curve is never periodic by definition (SegmentLine) <br>
//!   . the curve is always periodic by definition (Circle) <br>
//!   . the curve can be defined as periodic (BSpline). In this case <br>
//!     a function SetPeriodic allows you to give the shape of the <br>
//!     curve.  The general rule for this case is : if a curve can be <br>
//!     periodic or not the default periodicity set is non periodic <br>
//!     and you have to turn (explicitly) the curve into a periodic <br>
//!     curve  if you want the curve to be periodic. <br>
  Standard_EXPORT   virtual  Standard_Boolean IsPeriodic() const = 0;
  //! Returns the period of this curve. <br>
//! Exceptions Standard_NoSuchObject if this curve is not periodic. <br>
  Standard_EXPORT   virtual  Standard_Real Period() const;
  //! It is the global continuity of the curve <br>
//!  C0 : only geometric continuity, <br>
//!  C1 : continuity of the first derivative all along the Curve, <br>
//!  C2 : continuity of the second derivative all along the Curve, <br>
//!  C3 : continuity of the third derivative all along the Curve, <br>
//!  G1 : tangency continuity all along the Curve, <br>
//!  G2 : curvature continuity all along the Curve, <br>
//!  CN : the order of continuity is infinite. <br>
  Standard_EXPORT   virtual  GeomAbs_Shape Continuity() const = 0;
  //! Returns true if the degree of continuity of this curve is at least N. <br>
//! Exceptions -  Standard_RangeError if N is less than 0. <br>
  Standard_EXPORT   virtual  Standard_Boolean IsCN(const Standard_Integer N) const = 0;
  //! Returns in P the point of parameter U. <br>
//!  If the curve is periodic  then the returned point is P(U) with <br>
//!  U = Ustart + (U - Uend)  where Ustart and Uend are the <br>
//!  parametric bounds of the curve. <br>
//!  Raised only for the "OffsetCurve" if it is not possible to <br>
//!  compute the current point. For example when the first <br>
//!  derivative on the basis curve and the offset direction <br>
//!  are parallel. <br>
  Standard_EXPORT   virtual  void D0(const Standard_Real U,gp_Pnt& P) const = 0;
  
//!  Returns the point P of parameter U and the first derivative V1. <br>//! Raised if the continuity of the curve is not C1. <br>
  Standard_EXPORT   virtual  void D1(const Standard_Real U,gp_Pnt& P,gp_Vec& V1) const = 0;
  
//!  Returns the point P of parameter U, the first and second <br>
//!  derivatives V1 and V2. <br>//! Raised if the continuity of the curve is not C2. <br>
  Standard_EXPORT   virtual  void D2(const Standard_Real U,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2) const = 0;
  
//!  Returns the point P of parameter U, the first, the second <br>
//!  and the third derivative. <br>//! Raised if the continuity of the curve is not C3. <br>
  Standard_EXPORT   virtual  void D3(const Standard_Real U,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2,gp_Vec& V3) const = 0;
  
//! The returned vector gives the value of the derivative for the <br>
//!  order of derivation N. <br>//! Raised if the continuity of the curve is not CN. <br>
//! <br>//!  Raised if the   derivative  cannot  be  computed <br>
//!         easily. e.g. rational bspline and n > 3. <br>//! Raised if N < 1. <br>
  Standard_EXPORT   virtual  gp_Vec DN(const Standard_Real U,const Standard_Integer N) const = 0;
  //! Computes the point of parameter U on <me>. <br>
//!  If the curve is periodic  then the returned point is P(U) with <br>
//!  U = Ustart + (U - Uend)  where Ustart and Uend are the <br>
//!  parametric bounds of the curve. <br>
//!  it is implemented with D0. <br>
//!  Raised only for the "OffsetCurve" if it is not possible to <br>
//!  compute the current point. For example when the first <br>
//!  derivative on the basis curve and the offset direction are parallel. <br>
  Standard_EXPORT     gp_Pnt Value(const Standard_Real U) const;




  DEFINE_STANDARD_RTTI(Geom_Curve)

protected:




private: 




};





// other Inline functions and methods (like "C++: function call" methods)


#endif