1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
|
//==================================================================
// Copyright 2002, softSurfer (www.softsurfer.com)
// This code may be freely used and modified for any purpose
// providing that this copyright notice is included with it.
// SoftSurfer makes no warranty for this code, and cannot be held
// liable for any real or imagined damage resulting from it's use.
// Users of this code must verify correctness for their application.
//==================================================================
// Heavily modified by Randal A. Koene, 20050111
#include "Point3D.hh"
#include "Vector3D.hh"
// Read input Point3D format: "(%f)", "(%f, %f)", or "(%f, %f, %f)"
istream& operator>>( istream& input, Point3D& P) {
char c;
input >> c; // skip '('
input >> P.x;
input >> c;
if (c == ')') {
P.y=0.0; P.z=0.0; // 1D coord
return input;
}
input >> P.y;
input >> c;
if (c == ')') {
P.z=0.0; // 2D coord
return input;
}
input >> P.z;
input >> c; // skip ')'
return input;
}
// Write output Point3D in format: "(%f)", "(%f, %f)", or "(%f, %f, %f)"
ostream& operator<<( ostream& output, Point3D P) {
output << "(" << P.x << ", " << P.y << ", " << P.z << ")";
return output;
}
Vector3D Point3D::operator-( Point3D Q) // Vector3D diff of Point3Ds
{
Vector3D v;
v.x = x - Q.x;
v.y = y - Q.y;
v.z = z - Q.z;
return v;
}
Point3D Point3D::operator+( Vector3D v) // +ve translation
{
Point3D P;
P.x = x + v.x;
P.y = y + v.y;
P.z = z + v.z;
return P;
}
Point3D Point3D::operator-( Vector3D v) // -ve translation
{
Point3D P;
P.x = x - v.x;
P.y = y - v.y;
P.z = z - v.z;
return P;
}
Point3D& Point3D::operator+=( Vector3D v) // +ve translation
{
x += v.x;
y += v.y;
z += v.z;
return *this;
}
Point3D& Point3D::operator-=( Vector3D v) // -ve translation
{
x -= v.x;
y -= v.y;
z -= v.z;
return *this;
}
//------------------------------------------------------------------
// Point3D Scalar Operations (convenient but often illegal)
// are not valid for points in general,
// unless they are 'affine' as coeffs of
// a sum in which all the coeffs add to 1,
// such as: the sum (a*P + b*Q) with (a+b == 1).
// The programmer must enforce this (if they want to).
//------------------------------------------------------------------
Point3D operator*( int c, Point3D Q) {
Point3D P;
P.x = c * Q.x;
P.y = c * Q.y;
P.z = c * Q.z;
return P;
}
Point3D operator*( double c, Point3D Q) {
Point3D P;
P.x = c * Q.x;
P.y = c * Q.y;
P.z = c * Q.z;
return P;
}
Point3D operator*( Point3D Q, int c) {
Point3D P;
P.x = c * Q.x;
P.y = c * Q.y;
P.z = c * Q.z;
return P;
}
Point3D operator*( Point3D Q, double c) {
Point3D P;
P.x = c * Q.x;
P.y = c * Q.y;
P.z = c * Q.z;
return P;
}
Point3D operator/( Point3D Q, int c) {
Point3D P;
P.x = Q.x / c;
P.y = Q.y / c;
P.z = Q.z / c;
return P;
}
Point3D operator/( Point3D Q, double c) {
Point3D P;
P.x = Q.x / c;
P.y = Q.y / c;
P.z = Q.z / c;
return P;
}
//------------------------------------------------------------------
// Point3D Addition (also convenient but often illegal)
// is not valid unless part of an affine sum.
// The programmer must enforce this (if they want to).
//------------------------------------------------------------------
Point3D operator+( Point3D Q, Point3D R)
{
Point3D P;
P.x = Q.x + R.x;
P.y = Q.y + R.y;
P.z = Q.z + R.z;
return P;
}
//------------------------------------------------------------------
// Affine Sums
// Returns weighted sum, even when not affine, but...
// Tests if coeffs add to 1. If not, sets: err = Esum.
//------------------------------------------------------------------
Point3D asum( int n, int c[], Point3D Q[], int * err) {
int cs = 0;
Point3D P;
if (err) {
*err = 0;
for (int i=0; i<n; i++) cs += c[i];
if (cs != 1) // not an affine sum
*err = -1; // flag error, but compute sum anyway
}
for (int i=0; i<n; i++) {
P.x += c[i] * Q[i].x;
P.y += c[i] * Q[i].y;
P.z += c[i] * Q[i].z;
}
return P;
}
Point3D asum( int n, double c[], Point3D Q[], int * err) {
double cs = 0.0;
Point3D P;
if (err) {
*err = 0;
for (int i=0; i<n; i++) cs += c[i];
if (cs != 1) // not an affine sum
*err = -1; // flag error, but compute sum anyway
}
for (int i=0; i<n; i++) {
P.x += c[i] * Q[i].x;
P.y += c[i] * Q[i].y;
P.z += c[i] * Q[i].z;
}
return P;
}
//------------------------------------------------------------------
// Distance between Point3Ds
//------------------------------------------------------------------
double Point3D::distance( Point3D & P ) { // Euclidean distance
double dx = P.x - x;
double dy = P.y - y;
double dz = P.z - z;
return sqrt(dx*dx + dy*dy + dz*dz);
}
double distance( Point3D P, Point3D Q) { // Euclidean distance
double dx = P.x - Q.x;
double dy = P.y - Q.y;
double dz = P.z - Q.z;
return sqrt(dx*dx + dy*dy + dz*dz);
}
double distance2( Point3D P, Point3D Q) { // squared distance (more efficient)
double dx = P.x - Q.x;
double dy = P.y - Q.y;
double dz = P.z - Q.z;
return (dx*dx + dy*dy + dz*dz);
}
//------------------------------------------------------------------
// Sidedness of a Point3D wrt a directed line P1->P2
// - makes sense in 2D only
//------------------------------------------------------------------
double Point3D::isLeft( Point3D P1, Point3D P2, int * err) {
if (err) {
if (z != 0.0 || P1.Z() != 0.0 || P2.Z() != 0.0) *err = -1; // flag error, but compute anyway
else *err = 0;
}
return ((P1.x - x) * (P2.y - y) - (P2.x - x) * (P1.y - y));
}
|