1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
|
/*
vfdb_vfd.c
userspace HAL program to control a Delta VFD-B VFD
Yishin Li, adapted from Michael Haberler's vfs11_vfd/.
Copyright (C) 2007, 2008 Stephen Wille Padnos, Thoth Systems, Inc.
Copyright (C) 2009 John Thornton
Copyright (C) 2009,2010,2011,2012 Michael Haberler
Copyright (C) 2013 Yishin Li
Copyright (C) 2013 Sebastian Kuzminsky
Based on a work (test-modbus program, part of libmodbus) which is
Copyright (C) 2001-2005 Stéphane Raimbault <stephane.raimbault@free.fr>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, version 2.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
see 'man vfdb_vfd' and the VFD-B section in the Drivers manual.
*/
#ifndef ULAPI
#error This is intended as a userspace component only.
#endif
#ifdef DEBUG
#define DBG(fmt, ...) \
do { \
if (param.debug) printf(fmt, ## __VA_ARGS__); \
} while(0)
#else
#define DBG(fmt, ...)
#endif
#include <stdio.h>
#include <unistd.h>
#include <time.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
#include <signal.h>
#include <errno.h>
#include <getopt.h>
#include <math.h>
#include <signal.h>
#include <stdarg.h>
#include "rtapi.h"
#include "hal.h"
#include <modbus.h>
#include <modbus-tcp.h>
#include "inifile.h"
// command registers for DELTA VFD-B Inverter
#define REG_COMMAND1 0x2000 // "Communication command" - start/stop, fwd/reverse, DC break, fault reset, panel override
#define REG_FREQUENCY 0x2001 // Set frequency in 0.01Hz steps
#define REG_UPPERLIMIT 0x0100 // limit on output frequency in VFD
// command bits
#define CMD_FAULT_RESET 0x2000
#define CMD_EMERGENCY_STOP 0x1000
#define CMD_RUN 0x0002
#define CMD_STOP 0x0001
#define CMD_REVERSE 0x0020
#define CMD_FORWARD 0x0010
#define CMD_JOG_RUN 0x0003
// status registers for DELTA VFD-B Inverter
#define SR_ERROR_CODE 0x2100 //
#define SR_INV_OPSTATUS 0x2101 //
#define SR_OUTPUT_FREQ 0x2103 // 0.01Hz units
#define ST_EMERGENCY_STOPPED 0x0021 // EF1/ESTOP
#define SR_MOTOR_SPEED 0x210C // RPM
#define SR_TORQUE_RATIO 0x210B // %
#define SR_OUTPUT_CURRENT 0x2104 // output curr
#define SR_OUTPUT_VOLTAGE 0x2106 // %
#define SR_INVERTER_MODEL 0x0000
#define SR_RATED_CURRENT 0x0001 // 0.1A
#define SR_RATED_VOLTAGE 0x0102 // 0.1V
#define SR_EEPROM_VERSION 0x0006
/* There's an assumption in the gs2_vfd code, namely that the interesting registers
* are contiguous and all of them can be read with a single read_holding_registers()
* operation.
*
* However, the interesting VFD-B registers are not contiguous, and must be read
* one-by-one, because the Toshiba Modbus implementation only supports single-value
* modbus_read_registers() queries, slowing things down considerably. It seems that
* other VFD's have similar restrictions.
*
* Then, not all registers are equally important. We would like to read the
* VFD status and actual frequency on every Modbus turnaround, but there is no need to
* the read CPU version and inverter model more than once at startup, and the load factor etc
* every so often.
*/
#define POLLCYCLES 10 // read less important parameters only on every 10th transaction
#define MODBUS_MIN_OK 10 // assert the modbus-ok pin after 10 successful modbus transactions
/* HAL data struct */
typedef struct {
hal_s32_t *error_code;
hal_s32_t *status;
hal_float_t *freq_cmd; // frequency command
hal_float_t *freq_out; // actual output frequency
hal_float_t *output_volt; // output voltage
hal_float_t *RPM;
hal_float_t *RPS;
hal_float_t *torque_ratio;
hal_float_t *output_current;
hal_float_t *max_rpm; // calculated based on VFD max frequency setup parameter
hal_bit_t *at_speed; // when drive freq_cmd == freq_out and running
hal_bit_t *is_stopped; // when drive freq out is 0
hal_bit_t *is_e_stopped; // true if emergency stop status set in 0xFD00
hal_bit_t *modbus_ok; // the last MODBUS_OK transactions returned successfully
hal_float_t *speed_command; // speed command input
hal_bit_t *spindle_on; // spindle 1=on, 0=off
// hal_bit_t *err_reset; // reset errors when 1 - set fault reset bit in 0xFA00
hal_bit_t *jog_mode; // termed 'jog-run' in manual - might be useful for spindle positioning
hal_s32_t *errorcount; // number of failed Modbus transactions - hints at logical errors
hal_float_t looptime;
hal_float_t speed_tolerance;
hal_float_t motor_nameplate_hz; // speeds are scaled in Hz, not RPM
hal_float_t motor_nameplate_RPM; // nameplate RPM at default Hz
hal_float_t rpm_limit; // do-not-exceed output frequency
hal_bit_t *enabled; // if set: control VFD via Modbus commands, panel control disabled
// if zero (default): manual control through panel enabled
hal_float_t *upper_limit_hz; // VFD setup parameter - maximum output frequency in HZ
hal_bit_t *max_speed; // 1: run as fast as possible, ignore unimportant registers
// link this to spindle.orient-enable for better orient PID loop behaviour
} haldata_t;
// configuration and execution state
typedef struct params {
char *modname;
int modbus_debug;
int debug;
int slave;
int pollcycles;
char *device;
int baud;
int bits;
char parity;
int stopbits;
char *progname;
char *section;
FILE *fp;
char *inifile;
int reconnect_delay;
modbus_t *ctx;
haldata_t *haldata;
int hal_comp_id;
int read_initial_done;
// int old_err_reset;
uint16_t old_cmd1_reg; // copy of last write to FA00 */
int modbus_ok;
uint16_t failed_reg; // remember register for failed modbus transaction for debugging
int last_errno;
int report_device;
int motor_hz; // rated frequency of the motor
int motor_rpm; // rated speed of the motor
} params_type, *param_pointer;
// default options; read from inifile or command line
static params_type param = {
.modname = NULL,
.modbus_debug = 0,
.debug = 0,
.slave = 1,
.pollcycles = POLLCYCLES,
.device = "/dev/ttyS0",
.baud = 19200,
.bits = 8,
.parity = 'E',
.stopbits = 1,
.progname = "vfdb_vfd",
.section = "VFD-B",
.fp = NULL,
.inifile = NULL,
.reconnect_delay = 1,
.ctx = NULL,
.haldata = NULL,
.hal_comp_id = -1,
.read_initial_done = 0,
// .old_err_reset = 0,
.old_cmd1_reg = 0,
.modbus_ok = 0, // set modbus-ok bit if last MODBUS_OK transactions went well
.failed_reg =0,
.last_errno = 0,
.report_device = 0,
.motor_hz = 50, // 50 is common in Europe, 60 is common in the US
.motor_rpm = 1410, // 1410 is common in Europe, 1730 is common in the US
};
static int connection_state;
enum connstate {NOT_CONNECTED, OPENING, CONNECTING, CONNECTED, RECOVER, DONE};
static char *option_string = "dhrmn:S:I:";
static struct option long_options[] = {
{"debug", no_argument, 0, 'd'},
{"help", no_argument, 0, 'h'},
{"modbus-debug", no_argument, 0, 'm'},
{"report-device", no_argument, 0, 'r'},
{"ini", required_argument, 0, 'I'}, // default: getenv(INI_FILE_NAME)
{"section", required_argument, 0, 'S'}, // default section = LIBMODBUS
{"name", required_argument, 0, 'n'}, // vfd-b
{0,0,0,0}
};
void windup(param_pointer p)
{
if (p->haldata && *(p->haldata->errorcount)) {
fprintf(stderr,"%s: %d modbus errors\n",p->progname, *(p->haldata->errorcount));
fprintf(stderr,"%s: last command register: 0x%.4x\n",p->progname, p->failed_reg);
fprintf(stderr,"%s: last error: %s\n",p->progname, modbus_strerror(p->last_errno));
}
if (p->hal_comp_id >= 0)
hal_exit(p->hal_comp_id);
if (p->ctx)
modbus_close(p->ctx);
}
static void toggle_modbus_debug(int sig)
{
param.modbus_debug = !param.modbus_debug;
modbus_set_debug(param.ctx, param.modbus_debug);
}
static void toggle_debug(int sig)
{
param.debug = !param.debug;
}
static void quit(int sig)
{
if (param.debug)
fprintf(stderr,"quit(connection_state=%d)\n",connection_state);
switch (connection_state) {
case CONNECTING:
// modbus_tcp_accept() or TCP modbus_connect() were interrupted
// these wont return to the main loop, so exit here
windup(¶m);
exit(0);
break;
default:
connection_state = DONE;
break;
}
}
enum kwdresult {NAME_NOT_FOUND, KEYWORD_INVALID, KEYWORD_FOUND};
#define MAX_KWD 10
int findkwd(param_pointer p, const char *name, int *result, const char *keyword, int value, ...)
{
const char *word;
va_list ap;
const char *kwds[MAX_KWD], **s;
int nargs = 0;
if ((word = iniFind(p->fp, name, p->section)) == NULL)
return NAME_NOT_FOUND;
kwds[nargs++] = keyword;
va_start(ap, value);
while (keyword != NULL) {
if (!strcasecmp(word, keyword)) {
*result = value;
va_end(ap);
return KEYWORD_FOUND;
}
keyword = va_arg(ap, const char *);
kwds[nargs++] = keyword;
if (keyword)
value = va_arg(ap, int);
}
fprintf(stderr, "%s: %s:[%s]%s: found '%s' - not one of: ",
p->progname, p->inifile, p->section, name, word);
for (s = kwds; *s; s++)
fprintf(stderr, "%s ", *s);
fprintf(stderr, "\n");
va_end(ap);
return KEYWORD_INVALID;
}
int read_ini(param_pointer p)
{
const char *s;
int value;
if ((p->fp = fopen(p->inifile,"r")) != NULL) {
if (!p->debug)
iniFindInt(p->fp, "DEBUG", p->section, &p->debug);
if (!p->modbus_debug)
iniFindInt(p->fp, "MODBUS_DEBUG", p->section, &p->modbus_debug);
iniFindInt(p->fp, "BITS", p->section, &p->bits);
iniFindInt(p->fp, "BAUD", p->section, &p->baud);
iniFindInt(p->fp, "STOPBITS", p->section, &p->stopbits);
iniFindInt(p->fp, "TARGET", p->section, &p->slave);
iniFindInt(p->fp, "POLLCYCLES", p->section, &p->pollcycles);
iniFindInt(p->fp, "RECONNECT_DELAY", p->section, &p->reconnect_delay);
iniFindInt(p->fp, "MOTOR_HZ", p->section, &p->motor_hz);
iniFindInt(p->fp, "MOTOR_RPM", p->section, &p->motor_rpm);
if ((s = iniFind(p->fp, "DEVICE", p->section))) {
p->device = strdup(s);
}
value = p->parity;
if (findkwd(p, "PARITY", &value,
"even",'E',
"odd", 'O',
"none", 'N',
NULL) == KEYWORD_INVALID)
return -1;
p->parity = value;
} else {
fprintf(stderr, "%s:cant open inifile '%s'\n",
p->progname, p->inifile);
return -1;
}
return 0;
}
void usage(int argc, char **argv) {
printf("Usage: %s [options]\n", argv[0]);
printf("This is a userspace HAL program, typically loaded using the halcmd \"loadusr\" command:\n"
" loadusr vfdb_vfd [options]\n"
"Options are:\n"
"-I or --ini <inifile>\n"
" Use <inifile> (default: take ini filename from environment variable INI_FILE_NAME)\n"
"-S or --section <section-name> (default 8)\n"
" Read parameters from <section_name> (default 'VFD-B')\n"
"-d or --debug\n"
" Turn on debugging messages. Toggled by USR1 signal.\n"
"-m or --modbus-debug\n"
" Turn on modbus debugging. This will cause all modbus messages\n"
" to be printed in hex on the terminal. Toggled by USR2 signal.\n"
"-r or --report-device\n"
" Report device properties on console at startup\n");
}
int write_data(modbus_t *ctx, haldata_t *haldata, param_pointer p)
{
hal_float_t hzcalc;
int cmd1_reg;
int freq_reg, freq_cap;
if (!*(haldata->enabled)) {
// send 0 to 0x2000 register - no bus control
if (modbus_write_register(ctx, REG_COMMAND1, 0) < 0) {
p->failed_reg = REG_COMMAND1;
(*haldata->errorcount)++;
p->last_errno = errno;
return errno;
}
return 0;
}
retry:
// set frequency register
hzcalc = haldata->motor_nameplate_hz / haldata->motor_nameplate_RPM;
freq_reg = (int)round(fabs((*(haldata->speed_command) * hzcalc * 100.0)));
freq_cap = (int)round(fabs((haldata->rpm_limit * hzcalc * 100)));
// limit frequency to frequency set via max-rpm
if (freq_reg > freq_cap)
freq_reg = freq_cap;
*(haldata->freq_cmd) = freq_reg / 100.0;
// prepare command register
cmd1_reg = 0;
if (*haldata->spindle_on){
cmd1_reg |= (*haldata->jog_mode) ? CMD_JOG_RUN : CMD_RUN;
} else {
cmd1_reg |= CMD_STOP;
}
if (*(haldata->speed_command) >= 0) {
cmd1_reg |= CMD_FORWARD;
} else {
cmd1_reg |= CMD_REVERSE;
}
//TODO: implement RESET command for VFD-B
// // send CMD_FAULT_RESET and CMD_EMERGENCY_STOP only once so the poor thing comes back
// // out of reset/estop status eventually
// if (*(haldata->err_reset) && !(p->old_cmd1_reg & CMD_FAULT_RESET )) { // not sent yet
// cmd1_reg |= CMD_FAULT_RESET; // fault reset bit = 1 -> clear fault
// *(haldata->err_reset) = 0;
// } else {
// cmd1_reg &= ~CMD_FAULT_RESET;
// }
DBG("write_data: cmd1_reg=0x%4.4X old cmd1_reg=0x%4.4X\n", cmd1_reg,p->old_cmd1_reg);
if (modbus_write_register(ctx, REG_COMMAND1, cmd1_reg) < 0) {
// modbus transaction timed out. This may happen if VFD is in E-Stop.
// if VFD was in E-Stop, and a fault reset was sent, wait about 2 seconds for recovery
// we must assume that any command and frequency values sent were cleared, so we restart
// the operation.
// note that sending the CMD_EMERGENCY_STOP bit in cmd1_reg causes an immediate reboot
// without a Modbus reply (if the VFD actually was in e-stop) so we ignore this error.
if (cmd1_reg & CMD_EMERGENCY_STOP) {
sleep(2);
goto retry;
}
p->failed_reg = REG_COMMAND1;
(*haldata->errorcount)++;
p->last_errno = errno;
return errno;
}
// remember so we can toggle fault/estop reset just once
// otherwise the VFD keeps rebooting as long as the fault reset/estop reset bits are sent
p->old_cmd1_reg = cmd1_reg;
if ((modbus_write_register(ctx, REG_FREQUENCY, freq_reg)) < 0) {
p->failed_reg = REG_FREQUENCY;
(*haldata->errorcount)++;
p->last_errno = errno;
return errno;
}
return 0;
}
#define GETREG(reg,into) \
do { \
curr_reg = reg; \
if (modbus_read_registers(ctx, reg, 1, into) != 1) \
goto failed; \
} while (0)
int read_initial(modbus_t *ctx, haldata_t *haldata, param_pointer p)
{
uint16_t curr_reg, current,
voltage, model, eeprom, max_freq;
GETREG(REG_UPPERLIMIT, &max_freq);
*(haldata->upper_limit_hz) = (float)max_freq/100.0;
*(haldata->max_rpm) = *(haldata->upper_limit_hz) *
haldata->motor_nameplate_RPM / haldata->motor_nameplate_hz;
if (p->report_device) {
GETREG(SR_RATED_CURRENT, ¤t);
GETREG(SR_RATED_VOLTAGE, &voltage);
GETREG(SR_INVERTER_MODEL, &model);
GETREG(SR_EEPROM_VERSION, &eeprom);
printf("%s: inverter model: %d/0x%4.4x\n",
p->progname, model, model);
printf("%s: maximum ratings: %.1fV %.1fA %.2fHz\n",
p->progname, voltage/10.0, current/10.0, max_freq/100.0);
printf("%s: versions: eeprom=%d/0x%4.4x\n",
p->progname, eeprom, eeprom);
}
return 0;
failed:
p->failed_reg = curr_reg;
p->last_errno = errno;
(*haldata->errorcount)++;
if (p->debug)
fprintf(stderr, "%s: read_initial: modbus_read_registers(0x%4.4x): %s\n",
p->progname, curr_reg, modbus_strerror(errno));
return p->last_errno;
}
int read_data(modbus_t *ctx, haldata_t *haldata, param_pointer p)
{
int retval;
uint16_t curr_reg, val, status_reg, freq_reg;
static int pollcount = 0;
if (!p->read_initial_done) {
if ((retval = read_initial(ctx, haldata, p)))
return retval;
else
p->read_initial_done = 1;
}
GETREG(SR_ERROR_CODE, &curr_reg);
*(haldata->error_code) = curr_reg;
// we always at least read the main status register SR_INV_OPSTATUS
// and current operating frequency SR_OP_FREQUENCY
GETREG(SR_INV_OPSTATUS, &status_reg);
*(haldata->status) = status_reg;
GETREG(SR_OUTPUT_FREQ, &freq_reg);
*(haldata->freq_out) = freq_reg * 0.01;
DBG("read_data: status_reg=%4.4x freq_reg=%4.4x\n", status_reg, freq_reg);
// JET if freq out is 0 then the drive is stopped
*(haldata->is_stopped) = (freq_reg == 0);
if (status_reg == ST_EMERGENCY_STOPPED) { // set e-stop status.
*(haldata->is_e_stopped) = 1;
} else {
*(haldata->is_e_stopped) = 0;
}
if ((pollcount == 0) && !*(haldata->max_speed)) {
// less urgent registers
GETREG(SR_MOTOR_SPEED, &val);
*(haldata->RPM) = val;
*(haldata->RPS) = val/60.0;
GETREG(SR_TORQUE_RATIO, &val);
*(haldata->torque_ratio) = val;
GETREG(SR_OUTPUT_CURRENT, &val);
*(haldata->output_current) = val * 0.1;
GETREG(SR_OUTPUT_VOLTAGE, &val);
*(haldata->output_volt) = val * 0.1;
{
float speed_error;
speed_error = (*haldata->RPM / *haldata->speed_command) - 1.0;
if (fabs(speed_error) > haldata->speed_tolerance) {
*haldata->at_speed = 0;
} else {
*haldata->at_speed = 1;
}
}
} else {
pollcount++;
}
if (pollcount >= p->pollcycles)
pollcount = 0;
p->last_errno = retval = 0;
return 0;
failed:
p->failed_reg = curr_reg;
p->last_errno = errno;
(*haldata->errorcount)++;
if (p->debug)
fprintf(stderr, "%s: read_data: modbus_read_registers(0x%4.4x): %s\n",
p->progname, curr_reg, modbus_strerror(errno));
return p->last_errno;
}
#undef GETREG
#define PIN(x) \
do { \
status = (x); \
if ((status) != 0) \
return status; \
} while (0)
int hal_setup(int id, haldata_t *h, const char *name)
{
int status;
PIN(hal_pin_bit_newf(HAL_OUT, &(h->at_speed), id, "%s.at-speed", name));
PIN(hal_pin_float_newf(HAL_OUT, &(h->output_current), id, "%s.output-current", name));
PIN(hal_pin_bit_newf(HAL_IN, &(h->enabled), id, "%s.enable", name));
// PIN(hal_pin_bit_newf(HAL_IN, &(h->err_reset), id, "%s.err-reset", name));
PIN(hal_pin_bit_newf(HAL_IN, &(h->jog_mode), id, "%s.jog-mode", name));
PIN(hal_pin_float_newf(HAL_OUT, &(h->freq_cmd), id, "%s.frequency-command", name));
PIN(hal_pin_float_newf(HAL_OUT, &(h->freq_out), id, "%s.frequency-out", name));
PIN(hal_pin_float_newf(HAL_OUT, &(h->torque_ratio), id, "%s.inverter-load-percentage", name));
PIN(hal_pin_bit_newf(HAL_OUT, &(h->is_e_stopped), id, "%s.is-e-stopped", name)); // JET
PIN(hal_pin_bit_newf(HAL_OUT, &(h->is_stopped), id, "%s.is-stopped", name)); // JET
PIN(hal_pin_float_newf(HAL_OUT, &(h->max_rpm), id, "%s.max-rpm", name));
PIN(hal_pin_bit_newf(HAL_OUT, &(h->modbus_ok), id, "%s.modbus-ok", name)); // JET
PIN(hal_pin_float_newf(HAL_OUT, &(h->RPM), id, "%s.motor-RPM", name));
PIN(hal_pin_float_newf(HAL_OUT, &(h->RPS), id, "%s.motor-RPS", name));
PIN(hal_pin_float_newf(HAL_OUT, &(h->output_volt), id, "%s.output-voltage", name));
PIN(hal_pin_float_newf(HAL_IN, &(h->speed_command), id, "%s.speed-command", name));
PIN(hal_pin_bit_newf(HAL_IN, &(h->spindle_on), id, "%s.spindle-on", name));
PIN(hal_pin_s32_newf(HAL_OUT, &(h->error_code), id, "%s.error-code", name));
PIN(hal_pin_s32_newf(HAL_OUT, &(h->status), id, "%s.status", name));
PIN(hal_pin_bit_newf(HAL_IN, &(h->max_speed), id, "%s.max-speed", name));
PIN(hal_pin_s32_newf(HAL_OUT, &(h->errorcount), id, "%s.error-count", name));
PIN(hal_pin_float_newf(HAL_OUT, &(h->upper_limit_hz), id, "%s.frequency-limit", name));
PIN(hal_param_float_newf(HAL_RW, &(h->looptime), id, "%s.loop-time", name));
PIN(hal_param_float_newf(HAL_RW, &(h->motor_nameplate_hz), id, "%s.nameplate-HZ", name));
PIN(hal_param_float_newf(HAL_RW, &(h->motor_nameplate_RPM), id, "%s.nameplate-RPM", name));
PIN(hal_param_float_newf(HAL_RW, &(h->rpm_limit), id, "%s.rpm-limit", name));
PIN(hal_param_float_newf(HAL_RW, &(h->speed_tolerance), id, "%s.tolerance", name));
return 0;
}
#undef PIN
int set_defaults(param_pointer p)
{
haldata_t *h = p->haldata;
*(h->status) = 0;
*(h->freq_cmd) = 0;
*(h->freq_out) = 0;
*(h->output_volt) = 0;
*(h->RPM) = 0;
*(h->torque_ratio) = 0;
*(h->output_current) = 0;
*(h->upper_limit_hz) = 0;
*(h->at_speed) = 0;
*(h->is_stopped) = 0;
*(h->is_e_stopped) = 0;
*(h->speed_command) = 0;
*(h->modbus_ok) = 0;
*(h->spindle_on) = 0;
// *(h->err_reset) = 0;
*(h->jog_mode) = 0;
*(h->enabled) = 0;
*(h->errorcount) = 0;
*(h->max_speed) = 0;
h->looptime = 0.1;
h->speed_tolerance = 0.01; // output frequency within 1% of target frequency
h->motor_nameplate_hz = p->motor_hz;
h->motor_nameplate_RPM = p->motor_rpm;
h->rpm_limit = p->motor_rpm;
p->failed_reg = 0;
return 0;
}
int main(int argc, char **argv)
{
struct timespec loop_timespec, remaining;
int opt;
param_pointer p = ¶m;
int retval = -1;
p->progname = argv[0];
connection_state = NOT_CONNECTED;
p->inifile = getenv("INI_FILE_NAME");
while ((opt = getopt_long(argc, argv, option_string, long_options, NULL)) != -1) {
switch(opt) {
case 'n':
p->modname = strdup(optarg);
break;
case 'm':
p->modbus_debug = 1;
break;
case 'd':
p->debug = 1;
break;
case 'S':
p->section = optarg;
break;
case 'I':
p->inifile = optarg;
break;
case 'r':
p->report_device = 1;
break;
case 'h':
default:
usage(argc, argv);
exit(0);
}
}
if (p->inifile) {
if (read_ini(p))
goto finish;
if (!p->modname)
p->modname = "vfdb_vfd";
} else {
fprintf(stderr, "%s: ERROR: no inifile - either use '--ini inifile' or set INI_FILE_NAME environment variable\n", p->progname);
goto finish;
}
signal(SIGINT, quit);
signal(SIGTERM, quit);
signal(SIGUSR1, toggle_debug);
signal(SIGUSR2, toggle_modbus_debug);
// create HAL component
p->hal_comp_id = hal_init(p->modname);
if ((p->hal_comp_id < 0) || (connection_state == DONE)) {
fprintf(stderr, "%s: ERROR: hal_init(%s) failed: HAL error code=%d\n",
p->progname, p->modname, p->hal_comp_id);
retval = p->hal_comp_id;
goto finish;
}
// grab some shmem to store the HAL data in
p->haldata = (haldata_t *)hal_malloc(sizeof(haldata_t));
if ((p->haldata == 0) || (connection_state == DONE)) {
fprintf(stderr, "%s: ERROR: unable to allocate shared memory\n", p->modname);
retval = -1;
goto finish;
}
if (hal_setup(p->hal_comp_id,p->haldata, p->modname))
goto finish;
set_defaults(p);
hal_ready(p->hal_comp_id);
DBG("using libmodbus version %s\n", LIBMODBUS_VERSION_STRING);
connection_state = OPENING;
if ((p->ctx = modbus_new_rtu(p->device, p->baud, p->parity, p->bits, p->stopbits)) == NULL) {
fprintf(stderr, "%s: ERROR: modbus_new_rtu(%s): %s\n",
p->progname, p->device, modbus_strerror(errno));
goto finish;
}
DBG("device(%s) baud(%d) parity(%s) bits(%d) stopbits(%d)\n", p->device, p->baud, &(p->parity), p->bits, p->stopbits);
if (modbus_set_slave(p->ctx, p->slave) < 0) {
fprintf(stderr, "%s: ERROR: invalid slave number: %d\n", p->modname, p->slave);
goto finish;
}
if ((retval = modbus_connect(p->ctx)) != 0) {
fprintf(stderr, "%s: ERROR: couldn't open serial device: %s\n", p->modname, modbus_strerror(errno));
goto finish;
}
DBG("%s: serial port %s connected\n", p->progname, p->device);
modbus_set_debug(p->ctx, p->modbus_debug);
if (modbus_set_slave(p->ctx, p->slave) < 0) {
fprintf(stderr, "%s: ERROR: invalid slave number: %d\n", p->modname, p->slave);
goto finish;
}
connection_state = CONNECTED;
while (connection_state != DONE) {
while (connection_state == CONNECTED) {
if ((retval = read_data(p->ctx, p->haldata, p))) {
p->modbus_ok = 0;
} else {
p->modbus_ok++;
}
if (p->modbus_ok > MODBUS_MIN_OK) {
*(p->haldata->modbus_ok) = 1;
} else {
*(p->haldata->modbus_ok) = 0;
}
if ((retval = write_data(p->ctx, p->haldata, p))) {
p->modbus_ok = 0;
if ((retval == EBADF || retval == ECONNRESET || retval == EPIPE)) {
connection_state = RECOVER;
}
} else {
p->modbus_ok++;
}
if (p->modbus_ok > MODBUS_MIN_OK) {
*(p->haldata->modbus_ok) = 1;
} else {
*(p->haldata->modbus_ok) = 0;
}
/* don't want to scan too fast, and shouldn't delay more than a few seconds */
if (p->haldata->looptime < 0.001) p->haldata->looptime = 0.001;
if (p->haldata->looptime > 2.0) p->haldata->looptime = 2.0;
loop_timespec.tv_sec = (time_t)(p->haldata->looptime);
loop_timespec.tv_nsec = (long)((p->haldata->looptime - loop_timespec.tv_sec) * 1000000000l);
if (!p->haldata->max_speed)
nanosleep(&loop_timespec, &remaining);
}
switch (connection_state) {
case DONE:
// cleanup actions before exiting.
modbus_flush(p->ctx);
// clear the command register (control and frequency override) so panel operation gets reactivated
if ((retval = modbus_write_register(p->ctx, REG_COMMAND1, 0)) != 1) {
// not much we can do about it here if it goes wrong, so complain
fprintf(stderr, "%s: failed to release VFD from bus control (write to register 0x%x): %s\n",
p->progname, REG_COMMAND1, modbus_strerror(errno));
} else {
DBG("%s: VFD released from bus control.\n", p->progname);
}
break;
case RECOVER:
DBG("recover\n");
set_defaults(p);
p->read_initial_done = 0;
// reestablish connection to slave
modbus_flush(p->ctx);
modbus_close(p->ctx);
while ((connection_state != CONNECTED) &&
(connection_state != DONE)) {
sleep(p->reconnect_delay);
if (!modbus_connect(p->ctx)) {
connection_state = CONNECTED;
DBG("rtu/tcpclient reconnect\n");
} else {
fprintf(stderr, "%s: recovery: modbus_connect(): %s\n",
p->progname, modbus_strerror(errno));
}
}
break;
default: ;
}
}
retval = 0;
finish:
windup(p);
return retval;
}
|