summaryrefslogtreecommitdiff
path: root/src/hal/user_comps/gs2_vfd.c
blob: 6772f848135af002772cfda6f56696557bf7c913 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
/*
    gs2_vfd.c
    Copyright (C) 2013 Sebastian Kuzminsky
    Copyright (C) 2009 John Thornton
    Copyright (C) 2007, 2008 Stephen Wille Padnos, Thoth Systems, Inc.

    Based on a work (test-modbus program, part of libmodbus) which is
    Copyright (C) 2001-2005 Stéphane Raimbault <stephane.raimbault@free.fr>

    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation, version 2.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    General Public License for more details.

    You should have received a copy of the GNU Lesser General Public
    License along with this program; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307  USA.


    This is a userspace program that interfaces the Automation Direct
    GS2 VFD to the LinuxCNC HAL.

*/

#include <stdio.h>
#include <unistd.h>
#include <time.h>
#include <string.h>
#include <stdlib.h>
#include <signal.h>
#include <errno.h>
#include <getopt.h>
#include "rtapi.h"
#include "hal.h"
#include <modbus.h>

/* Read Registers:
	0x2100 = status word 1
	0x2101 = status word 2
	0x2102 = frequency command
	0x2103 = actual frequency
	0x2104 = output current
	0x2105 = DC bus voltage
	0x2106 = actual output voltage
	0x2107 = actual RPM
	0x2108 + 0x2109 = scale freq (not sure what this actually is - it's the same as 0x2103)
	0x210A = power factor.  Not sure of the units (1/10 or 1/100)
	0x210B = load percentage
	0x210C = Firmware revision (never saw anything other than 0 here)
	total of 13 registers		*/
#define START_REGISTER_R	0x2100
#define NUM_REGISTERS_R		13
/* write registers:
	0x91A = Speed reference, in 1/10Hz increments
	0x91B = RUN command, 0=stop, 1=run
	0x91C = direction, 0=forward, 1=reverse
	0x91D = serial fault, 0=no fault, 1=fault (maybe can stop with this?)
	0x91E = serial fault reset, 0=no reset, 1 = reset fault
	total of 5 registers */
#define START_REGISTER_W	0x091A
#define NUM_REGISTERS_W		5


#define GS2_REG_STOP_METHOD                             0x0100
#define GS2_REG_STOP_METHOD__RAMP_TO_STOP               0
#define GS2_REG_STOP_METHOD__COAST_TO_STOP              1

#define GS2_REG_ACCELERATION_TIME_1                     0x0101

#define GS2_REG_DECELERATION_TIME_1                     0x0102

#define GS2_REG_OVER_VOLTAGE_STALL_PREVENTION           0x0605
#define GS2_REG_OVER_VOLTAGE_STALL_PREVENTION__ENABLE   0
#define GS2_REG_OVER_VOLTAGE_STALL_PREVENTION__DISABLE  1


/* modbus slave data struct */
typedef struct {
	int slave;		/* slave address */
	int read_reg_start;	/* starting read register number */
	int read_reg_count;	/* number of registers to read */
	int write_reg_start;	/* starting write register number */
	int write_reg_count;	/* number of registers to write */
} slavedata_t;

/* HAL data struct */
typedef struct {
  hal_s32_t	*stat1;		// status words from the VFD.  Maybe split these out sometime
  hal_s32_t	*stat2;
  hal_float_t	*freq_cmd;	// frequency command
  hal_float_t	*freq_out;	// actual output frequency
  hal_float_t	*curr_out;	// output current
  hal_float_t	*DCBusV;	// 
  hal_float_t	*outV;
  hal_float_t	*RPM;
  hal_float_t	*scale_freq;
  hal_float_t	*power_factor;
  hal_float_t	*load_pct;
  hal_s32_t	*FW_Rev;
  hal_s32_t	errorcount;
  hal_float_t	looptime;
  hal_float_t	speed_tolerance;
  hal_s32_t	retval;
  hal_bit_t		*at_speed;		// when drive freq_cmd == freq_out and running
  hal_bit_t		*is_stopped;	// when drive freq out is 0
  hal_float_t	*speed_command;		// speed command input
  hal_float_t	motor_hz;		// speeds are scaled in Hz, not RPM
  hal_float_t	motor_RPM;		// nameplate RPM at default Hz
  hal_bit_t	*spindle_on;		// spindle 1=on, 0=off
  hal_bit_t	*spindle_fwd;		// direction, 0=fwd, 1=rev
  hal_bit_t *spindle_rev;		// on when in rev and running
  hal_bit_t	*err_reset;		// reset errors when 1
  hal_s32_t ack_delay;		// number of read/writes before checking at-speed

  hal_bit_t	old_run;		// so we can detect changes in the run state
  hal_bit_t	old_dir;
  hal_bit_t	old_err_reset;
} haldata_t;

static int done;
char *modname = "gs2_vfd";

static struct option long_options[] = {
    {"bits", 1, 0, 'b'},
    {"device", 1, 0, 'd'},
    {"debug", 0, 0, 'g'},
    {"help", 0, 0, 'h'},
    {"name", 1, 0, 'n'},
    {"parity", 1, 0, 'p'},
    {"rate", 1, 0, 'r'},
    {"stopbits", 1, 0, 's'},
    {"target", 1, 0, 't'},
    {"verbose", 0, 0, 'v'},
    {"accel-seconds", required_argument, NULL, 'A'},
    {"decel-seconds", required_argument, NULL, 'D'},
    {"braking-resistor", no_argument, NULL, 'R'},
    {0,0,0,0}
};

static char *option_string = "b:d:hn:p:r:s:t:v";

static char *bitstrings[] = {"5", "6", "7", "8", NULL};

// The old libmodbus (v2?) used strings to indicate parity, the new one
// (v3.0.1) uses chars.  The gs2_vfd driver gets the string indicating the
// parity to use from the command line, and I don't want to change the
// command-line usage.  The command-line argument string must match an
// entry in paritystrings, and the index of the matching string is used as
// the index to the parity character for the new libmodbus.
static char *paritystrings[] = {"even", "odd", "none", NULL};
static char paritychars[] = {'E', 'O', 'N'};

static char *ratestrings[] = {"110", "300", "600", "1200", "2400", "4800", "9600",
    "19200", "38400", "57600", "115200", NULL};
static char *stopstrings[] = {"1", "2", NULL};

static void quit(int sig) {
    done = 1;
}

static int comm_delay = 0; // JET delay counter for at-speed

int match_string(char *string, char **matches) {
    int len, which, match;
    which=0;
    match=-1;
    if ((matches==NULL) || (string==NULL)) return -1;
    len = strlen(string);
    while (matches[which] != NULL) {
        if ((!strncmp(string, matches[which], len)) && (len <= strlen(matches[which]))) {
            if (match>=0) return -1;        // multiple matches
            match=which;
        }
        ++which;
    }
    return match;
}


int gs2_set_accel_time(modbus_t *mb_ctx, float accel_time) {
    int data = accel_time * 10;
    int r;

    r = modbus_write_register(mb_ctx, GS2_REG_ACCELERATION_TIME_1, data);
    if (r != 1) {
        fprintf(
            stderr,
            "failed to set register P0x%04x to 0x%04x (%d): %s\n",
            GS2_REG_ACCELERATION_TIME_1,
            data, data,
            strerror(errno)
        );
        return -1;
    }

    return 0;
}


int gs2_set_decel_time(modbus_t *mb_ctx, float decel_time) {
    int data;
    int stop_method;
    int r;

    if (decel_time == 0.0) {
        stop_method = GS2_REG_STOP_METHOD__COAST_TO_STOP;
        decel_time = 20.0;
    } else {
        stop_method = GS2_REG_STOP_METHOD__RAMP_TO_STOP;
    }
    r = modbus_write_register(mb_ctx, GS2_REG_STOP_METHOD, stop_method);
    if (r != 1) {
        fprintf(
            stderr,
            "failed to set register P0x%04x to 0x%04x: %s\n",
            GS2_REG_STOP_METHOD,
            stop_method,
            strerror(errno)
        );
        return -1;
    }

    data = decel_time * 10;
    r = modbus_write_register(mb_ctx, GS2_REG_DECELERATION_TIME_1, data);
    if (r != 1) {
        fprintf(
            stderr,
            "failed to set register P0x%04x to 0x%04x (%d): %s\n",
            GS2_REG_DECELERATION_TIME_1,
            data, data,
            strerror(errno)
        );
        return -1;
    }

    return 0;
}


int gs2_set_braking_resistor(modbus_t *mb_ctx, int braking_resistor) {
    int data;
    int r;

    if (braking_resistor) {
        data = GS2_REG_OVER_VOLTAGE_STALL_PREVENTION__DISABLE;
    } else {
        data = GS2_REG_OVER_VOLTAGE_STALL_PREVENTION__ENABLE;
    }
    r = modbus_write_register(
        mb_ctx,
        GS2_REG_OVER_VOLTAGE_STALL_PREVENTION,
        data
    );
    if (r != 1) {
        fprintf(
            stderr,
            "failed to set register P0x%04x to 0x%04x: %s\n",
            GS2_REG_OVER_VOLTAGE_STALL_PREVENTION,
            data,
            strerror(errno)
        );
        return -1;
    }

    return 0;
}


typedef struct {
    uint8_t param_group, param_number;
    const char *name;
} gs2_reg;

gs2_reg gs2_register[] = {
    { 0x00, 0x00, "Motor Nameplate Voltage" },
    { 0x00, 0x01, "Motor Nameplate Amps" },
    { 0x00, 0x02, "Motor Base Frequency" },
    { 0x00, 0x03, "Motor Base RPM" },
    { 0x00, 0x04, "Motor Max RPM" },
    { 0x01, 0x00, "Stop Method" },
    { 0x01, 0x01, "Acceleration Time 1 (0.1 seconds)" },
    { 0x01, 0x02, "Deceleration Time 1 (0.1 seconds)" },
    { 0x01, 0x03, "Accel S-Curve" },
    { 0x01, 0x04, "Decel S-Curve" },
    { 0x01, 0x05, "Acceleration Time 2 (0.1 seconds)" },
    { 0x01, 0x06, "Deceleration Time 2 (0.1 seconds)" },
    { 0x02, 0x00, "Volts/Hertz Settings" },
    { 0x02, 0x05, "Mid-point Frequency" },
    { 0x02, 0x05, "Mid-point Voltage" },
    { 0x02, 0x06, "Minimum Output Frequency" },
    { 0x02, 0x07, "Minimum Output Voltage" },
    { 0x06, 0x05, "Over-Voltage Stall Prevention" },
    { 0x06, 0x06, "Auto Adjustable Accel/Decel" },
    { 0x09, 0x27, "Firmware Version" },
    { 0x09, 0x29, "GS Series Number" },
    { 0x09, 0x2a, "Manufacturer Model Information" },
    { 0x00, 0x00, NULL }  // NULL name mean "end of list"
};


void gs2_show_config(modbus_t *mb_ctx) {
    gs2_reg *reg;
    int r;

    for (reg = &gs2_register[0]; reg->name != NULL; reg ++) {
        int address;
        uint16_t data;

        address = (reg->param_group << 8) | reg->param_number;

        r = modbus_read_registers(mb_ctx, address, 1, &data);
        if (r != 1) {
            fprintf(
                stderr,
                "failed to read register P%d.%02d (%s)\n",
                reg->param_group,
                reg->param_number,
                reg->name
            );
            return;
        }
        printf(
            "P%d.%02d %s: 0x%04x (%d)\n",
            reg->param_group,
            reg->param_number,
            reg->name,
            data,
            data
        );
    }
}


int write_data(modbus_t *mb_ctx, slavedata_t *slavedata, haldata_t *haldata) {
//  int write_data[MAX_WRITE_REGS];
    int retval;
    hal_float_t hzcalc;
        
    if (haldata->motor_hz<10)
        haldata->motor_hz = 60;
    if ((haldata->motor_RPM < 600) || (haldata->motor_RPM > 5000))
        haldata->motor_RPM = 1800;
    hzcalc = haldata->motor_hz/haldata->motor_RPM;

    retval = modbus_write_register(
        mb_ctx,
        slavedata->write_reg_start,
        abs((int)(*(haldata->speed_command)*hzcalc*10))
    );

    if (*(haldata->spindle_on) != haldata->old_run) {
        if (*haldata->spindle_on){
            modbus_write_register(mb_ctx, slavedata->write_reg_start+1, 1);
            comm_delay=0;
        }    
        else
            modbus_write_register(mb_ctx, slavedata->write_reg_start+1, 0);
        haldata->old_run = *(haldata->spindle_on);
    }
    if (*(haldata->spindle_fwd) != haldata->old_dir) {
        if (*haldata->spindle_fwd)
            modbus_write_register(mb_ctx, slavedata->write_reg_start+2, 0);
        else
            modbus_write_register(mb_ctx, slavedata->write_reg_start+2, 1);
        haldata->old_dir = *(haldata->spindle_fwd);
    }
    if (*(haldata->spindle_fwd) || !(*(haldata->spindle_on)))  // JET turn on and off rev based on the status of fwd
    	*(haldata->spindle_rev) = 0;
    if (!(*haldata->spindle_fwd) && *(haldata->spindle_on))
    	*(haldata->spindle_rev) = 1;	
    if (*(haldata->err_reset) != haldata->old_err_reset) {
        if (*(haldata->err_reset))
            modbus_write_register(mb_ctx, slavedata->write_reg_start+4, 1);
        else
            modbus_write_register(mb_ctx, slavedata->write_reg_start+4, 0);
        haldata->old_err_reset = *(haldata->err_reset);
    }
    if (comm_delay < haldata->ack_delay){ // JET allow time for communications between drive and EMC
    	comm_delay++;
    }
    if ((*haldata->spindle_on) && comm_delay == haldata->ack_delay){ // JET test for up to speed
    	if ((*(haldata->freq_cmd))==(*(haldata->freq_out)))
    		*(haldata->at_speed) = 1;
    } 
    if (*(haldata->spindle_on)==0){ // JET reset at-speed
    	*(haldata->at_speed) = 0;
    }
    haldata->retval = retval;
    return retval;
}

void usage(int argc, char **argv) {
    printf("Usage:  %s [options]\n", argv[0]);
    printf(
    "This is a userspace HAL program, typically loaded using the halcmd \"loadusr\" command:\n"
    "    loadusr gs2_vfd\n"
    "There are several command-line options.  Options that have a set list of possible values may\n"
    "    be set by using any number of characters that are unique.  For example, --rate 5 will use\n"
    "    a baud rate of 57600, since no other available baud rates start with \"5\"\n"
    "-b or --bits <n> (default 8)\n"
    "    Set number of data bits to <n>, where n must be from 5 to 8 inclusive\n"
    "-d or --device <path> (default /dev/ttyS0)\n"
    "    Set the name of the serial device node to use\n"
    "-v or --verbose\n"
    "    Turn on verbose mode.\n"
    "-g or --debug\n"
    "    Turn on debug mode.  This will cause all modbus messages to be\n"
    "    printed in hex on the terminal.\n"
    "-n or --name <string> (default gs2_vfd)\n"
    "    Set the name of the HAL module.  The HAL comp name will be set to <string>, and all pin\n"
    "    and parameter names will begin with <string>.\n"
    "-p or --parity {even,odd,none} (defalt odd)\n"
    "    Set serial parity to even, odd, or none.\n"
    "-r or --rate <n> (default 38400)\n"
    "    Set baud rate to <n>.  It is an error if the rate is not one of the following:\n"
    "    110, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200\n"
    "-s or --stopbits {1,2} (default 1)\n"
    "    Set serial stop bits to 1 or 2\n"
    "-t or --target <n> (default 1)\n"
    "    Set MODBUS target (slave) number.  This must match the device number you set on the GS2.\n"
    "-A, --accel-seconds <n>\n"
    "    (default 10.0) Seconds to accelerate the spindle from 0 to Max RPM.\n"
    "-D, --decel-seconds <n>\n"
    "    (default 0.0) Seconds to decelerate the spindle from Max RPM to 0.\n"
    "    If set to 0.0 the spindle will be allowed to coast to a stop without\n"
    "    controlled deceleration.\n"
    "-R, --braking-resistor\n"
    "    This argument should be used when a braking resistor is installed on the\n"
    "    GS2 VFD (see Appendix A of the GS2 manual).  It disables deceleration\n"
    "    over-voltage stall prevention (see GS2 modbus Parameter 6.05), allowing\n"
    "    the VFD to keep braking even in situations where the motor is regenerating\n"
    "    high voltage.  The regenerated voltage gets safely dumped into the\n"
    "    braking resistor.\n"
    );
}
int read_data(modbus_t *mb_ctx, slavedata_t *slavedata, haldata_t *hal_data_block) {
    uint16_t receive_data[MODBUS_MAX_READ_REGISTERS];	/* a little padding in there */
    int retval;

    /* can't do anything with a null HAL data block */
    if (hal_data_block == NULL)
        return -1;
    /* but we can signal an error if the other params are null */
    if ((mb_ctx==NULL) || (slavedata == NULL)) {
        hal_data_block->errorcount++;
        return -1;
    }
    retval = modbus_read_registers(mb_ctx, slavedata->read_reg_start,
                                slavedata->read_reg_count, receive_data);
    if (retval==slavedata->read_reg_count) {
        retval = 0;
        hal_data_block->retval = retval;
        if (retval==0) {
        *(hal_data_block->stat1) = receive_data[0];
        *(hal_data_block->stat2) = receive_data[1];
        *(hal_data_block->freq_cmd) = receive_data[2] * 0.1;
        *(hal_data_block->freq_out) = receive_data[3] * 0.1;
        if (receive_data[3]==0){	// JET if freq out is 0 then the drive is stopped
        *(hal_data_block->is_stopped) = 1;	
        } else {	
        *(hal_data_block->is_stopped) = 0; 
        }	
        *(hal_data_block->curr_out) = receive_data[4] * 0.1;
        *(hal_data_block->DCBusV) = receive_data[5] * 0.1;
        *(hal_data_block->outV) = receive_data[6] * 0.1;
        *(hal_data_block->RPM) = receive_data[7];
        *(hal_data_block->scale_freq) = (receive_data[8] | (receive_data[9] << 16)) * 0.1;
        *(hal_data_block->power_factor) = receive_data[10];
        *(hal_data_block->load_pct) = receive_data[11] * 0.1;
        *(hal_data_block->FW_Rev) = receive_data[12];
        retval = 0;
        }
    } else {
        hal_data_block->retval = retval;
        hal_data_block->errorcount++;
        retval = -1;
    }
    return retval;
}

int main(int argc, char **argv)
{
    int retval = 0;
    modbus_t *mb_ctx;
    haldata_t *haldata;
    slavedata_t slavedata;
    int slave;
    int hal_comp_id;
    struct timespec loop_timespec, remaining;
    int baud, bits, stopbits, verbose, debug;
    char *device, *endarg;
    char parity;
    int opt;
    int argindex, argvalue;

    float accel_time = 10.0;
    float decel_time = 0.0;  // this means: coast to a stop, don't try to control deceleration time
    int braking_resistor = 0;


    done = 0;

    // assume that nothing is specified on the command line
    baud = 38400;
    bits = 8;
    stopbits = 1;
    debug = 0;
    verbose = 0;
    device = "/dev/ttyS0";
    parity = 'O';

    /* slave / register info */
    slave = 1;
    slavedata.read_reg_start = START_REGISTER_R;
    slavedata.read_reg_count = NUM_REGISTERS_R;
    slavedata.write_reg_start = START_REGISTER_W;
    slavedata.write_reg_count = NUM_REGISTERS_R;

    // process command line options
    while ((opt=getopt_long(argc, argv, option_string, long_options, NULL)) != -1) {
        switch(opt) {
            case 'b':   // serial data bits, probably should be 8 (and defaults to 8)
                argindex=match_string(optarg, bitstrings);
                if (argindex<0) {
                    printf("gs2_vfd: ERROR: invalid number of bits: %s\n", optarg);
                    retval = -1;
                    goto out_noclose;
                }
                bits = atoi(bitstrings[argindex]);
                break;
            case 'd':   // device name, default /dev/ttyS0
                // could check the device name here, but we'll leave it to the library open
                if (strlen(optarg) > FILENAME_MAX) {
                    printf("gs2_vfd: ERROR: device node name is too long: %s\n", optarg);
                    retval = -1;
                    goto out_noclose;
                }
                device = strdup(optarg);
                break;
            case 'g':
                debug = 1;
                break;
            case 'v':
                verbose = 1;
                break;
            case 'n':   // module base name
                if (strlen(optarg) > HAL_NAME_LEN-20) {
                    printf("gs2_vfd: ERROR: HAL module name too long: %s\n", optarg);
                    retval = -1;
                    goto out_noclose;
                }
                modname = strdup(optarg);
                break;
            case 'p':   // parity, should be a string like "even", "odd", or "none"
                argindex=match_string(optarg, paritystrings);
                if (argindex<0) {
                    printf("gs2_vfd: ERROR: invalid parity: %s\n", optarg);
                    retval = -1;
                    goto out_noclose;
                }
                parity = paritychars[argindex];
                break;
            case 'r':   // Baud rate, 38400 default
                argindex=match_string(optarg, ratestrings);
                if (argindex<0) {
                    printf("gs2_vfd: ERROR: invalid baud rate: %s\n", optarg);
                    retval = -1;
                    goto out_noclose;
                }
                baud = atoi(ratestrings[argindex]);
                break;
            case 's':   // stop bits, defaults to 1
                argindex=match_string(optarg, stopstrings);
                if (argindex<0) {
                    printf("gs2_vfd: ERROR: invalid number of stop bits: %s\n", optarg);
                    retval = -1;
                    goto out_noclose;
                }
                stopbits = atoi(stopstrings[argindex]);
                break;
            case 't':   // target number (MODBUS ID), default 1
                argvalue = strtol(optarg, &endarg, 10);
                if ((*endarg != '\0') || (argvalue < 1) || (argvalue > 254)) {
                    printf("gs2_vfd: ERROR: invalid slave number: %s\n", optarg);
                    retval = -1;
                    goto out_noclose;
                }
                slave = argvalue;
                break;
            case 'A':
                accel_time = strtof(optarg, &endarg);
                if (*endarg != '\0') {
                    printf("gs2_vfd: ERROR: invalid acceleration time: %s\n", optarg);
                    retval = -1;
                    goto out_noclose;
                }
                break;
            case 'D':
                decel_time = strtof(optarg, &endarg);
                if (*endarg != '\0') {
                    printf("gs2_vfd: ERROR: invalid deceleration time: %s\n", optarg);
                    retval = -1;
                    goto out_noclose;
                }
                break;
            case 'R':
                braking_resistor = 1;
                break;
            case 'h':
            default:
                usage(argc, argv);
                exit(0);
                break;
        }
    }

    printf("%s: device='%s', baud=%d, parity='%c', bits=%d, stopbits=%d, address=%d\n",
           modname, device, baud, parity, bits, stopbits, slave);
    /* point TERM and INT signals at our quit function */
    /* if a signal is received between here and the main loop, it should prevent
            some initialization from happening */
    signal(SIGINT, quit);
    signal(SIGTERM, quit);

    /* Assume 38.4k O-8-1 serial settings, device 1 */
    mb_ctx = modbus_new_rtu(device, baud, parity, bits, stopbits);
    if (mb_ctx == NULL) {
        printf("%s: ERROR: couldn't open modbus serial device: %s\n", modname, modbus_strerror(errno));
        goto out_noclose;
    }

    /* the open has got to work, or we're out of business */
    if (((retval = modbus_connect(mb_ctx))!=0) || done) {
        printf("%s: ERROR: couldn't open serial device: %s\n", modname, modbus_strerror(errno));
        goto out_noclose;
    }

    modbus_set_debug(mb_ctx, debug);

    modbus_set_slave(mb_ctx, slave);


    //
    // configure the gs2 vfd based on command-line arguments
    //
    if (gs2_set_accel_time(mb_ctx, accel_time) != 0) {
        retval = 1;
        goto out_close;
    }

    if (gs2_set_decel_time(mb_ctx, decel_time) != 0) {
        retval = 1;
        goto out_close;
    }

    if (gs2_set_braking_resistor(mb_ctx, braking_resistor) != 0) {
        retval = 1;
        goto out_close;
    }

    // show the gs2 vfd configuration
    if (verbose) {
        gs2_show_config(mb_ctx);
    }

    /* create HAL component */
    hal_comp_id = hal_init(modname);
    if ((hal_comp_id < 0) || done) {
        printf("%s: ERROR: hal_init failed\n", modname);
        retval = hal_comp_id;
        goto out_close;
    }

    /* grab some shmem to store the HAL data in */
    haldata = (haldata_t *)hal_malloc(sizeof(haldata_t));
    if ((haldata == 0) || done) {
        printf("%s: ERROR: unable to allocate shared memory\n", modname);
        retval = -1;
        goto out_close;
    }

    retval = hal_pin_s32_newf(HAL_OUT, &(haldata->stat1), hal_comp_id, "%s.status-1", modname);
    if (retval!=0) goto out_closeHAL;
    retval = hal_pin_s32_newf(HAL_OUT, &(haldata->stat2), hal_comp_id, "%s.status-2", modname);
    if (retval!=0) goto out_closeHAL;
    retval = hal_pin_float_newf(HAL_OUT, &(haldata->freq_cmd), hal_comp_id, "%s.frequency-command", modname);
    if (retval!=0) goto out_closeHAL;
    retval = hal_pin_float_newf(HAL_OUT, &(haldata->freq_out), hal_comp_id, "%s.frequency-out", modname);
    if (retval!=0) goto out_closeHAL;
    retval = hal_pin_float_newf(HAL_OUT, &(haldata->curr_out), hal_comp_id, "%s.output-current", modname);
    if (retval!=0) goto out_closeHAL;
    retval = hal_pin_float_newf(HAL_OUT, &(haldata->DCBusV), hal_comp_id, "%s.DC-bus-volts", modname);
    if (retval!=0) goto out_closeHAL;
    retval = hal_pin_float_newf(HAL_OUT, &(haldata->outV), hal_comp_id, "%s.output-voltage", modname);
    if (retval!=0) goto out_closeHAL;
    retval = hal_pin_float_newf(HAL_OUT, &(haldata->RPM), hal_comp_id, "%s.motor-RPM", modname);
    if (retval!=0) goto out_closeHAL;
    retval = hal_pin_float_newf(HAL_OUT, &(haldata->scale_freq), hal_comp_id, "%s.scale-frequency", modname);
    if (retval!=0) goto out_closeHAL;
    retval = hal_pin_float_newf(HAL_OUT, &(haldata->power_factor), hal_comp_id, "%s.power-factor", modname);
    if (retval!=0) goto out_closeHAL;
    retval = hal_pin_float_newf(HAL_OUT, &(haldata->load_pct), hal_comp_id, "%s.load-percentage", modname);
    if (retval!=0) goto out_closeHAL;
    retval = hal_pin_s32_newf(HAL_OUT, &(haldata->FW_Rev), hal_comp_id, "%s.firmware-revision", modname);
    if (retval!=0) goto out_closeHAL;
    retval = hal_param_s32_newf(HAL_RW, &(haldata->errorcount), hal_comp_id, "%s.error-count", modname);
    if (retval!=0) goto out_closeHAL;
    retval = hal_param_float_newf(HAL_RW, &(haldata->looptime), hal_comp_id, "%s.loop-time", modname);
    if (retval!=0) goto out_closeHAL;
    retval = hal_param_s32_newf(HAL_RW, &(haldata->retval), hal_comp_id, "%s.retval", modname);
    if (retval!=0) goto out_closeHAL;
    retval = hal_pin_bit_newf(HAL_OUT, &(haldata->at_speed), hal_comp_id, "%s.at-speed", modname);
    if (retval!=0) goto out_closeHAL;
    retval = hal_pin_bit_newf(HAL_OUT, &(haldata->is_stopped), hal_comp_id, "%s.is-stopped", modname); // JET
    if (retval!=0) goto out_closeHAL; 
    retval = hal_pin_float_newf(HAL_IN, &(haldata->speed_command), hal_comp_id, "%s.speed-command", modname);
    if (retval!=0) goto out_closeHAL;
    retval = hal_pin_bit_newf(HAL_IN, &(haldata->spindle_on), hal_comp_id, "%s.spindle-on", modname);
    if (retval!=0) goto out_closeHAL;
    retval = hal_pin_bit_newf(HAL_IN, &(haldata->spindle_fwd), hal_comp_id, "%s.spindle-fwd", modname);
    if (retval!=0) goto out_closeHAL;
    retval = hal_pin_bit_newf(HAL_IN, &(haldata->spindle_rev), hal_comp_id, "%s.spindle-rev", modname); //JET
    if (retval!=0) goto out_closeHAL;
    retval = hal_pin_bit_newf(HAL_IN, &(haldata->err_reset), hal_comp_id, "%s.err-reset", modname);
    if (retval!=0) goto out_closeHAL;
    retval = hal_param_float_newf(HAL_RW, &(haldata->speed_tolerance), hal_comp_id, "%s.tolerance", modname);
    if (retval!=0) goto out_closeHAL;
    retval = hal_param_float_newf(HAL_RW, &(haldata->motor_hz), hal_comp_id, "%s.nameplate-HZ", modname);
    if (retval!=0) goto out_closeHAL;
    retval = hal_param_float_newf(HAL_RW, &(haldata->motor_RPM), hal_comp_id, "%s.nameplate-RPM", modname);
    if (retval!=0) goto out_closeHAL;
    retval = hal_param_s32_newf(HAL_RW, &(haldata->ack_delay), hal_comp_id, "%s.ack-delay", modname);
    if (retval!=0) goto out_closeHAL;

    /* make default data match what we expect to use */
    *(haldata->stat1) = 0;
    *(haldata->stat2) = 0;
    *(haldata->freq_cmd) = 0;
    *(haldata->freq_out) = 0;
    *(haldata->curr_out) = 0;
    *(haldata->DCBusV) = 0;
    *(haldata->outV) = 0;
    *(haldata->RPM) = 0;
    *(haldata->scale_freq) = 0;
    *(haldata->power_factor) = 0;
    *(haldata->load_pct) = 0;
    *(haldata->FW_Rev) = 0;
    haldata->errorcount = 0;
    haldata->looptime = 0.1;
    haldata->motor_RPM = 1730;
    haldata->motor_hz = 60;
    haldata->speed_tolerance = 0.01;
    haldata->ack_delay = 2;
    *(haldata->err_reset) = 0;
    *(haldata->spindle_on) = 0;
    *(haldata->spindle_fwd) = 1;
    *(haldata->spindle_rev) = 0;
    haldata->old_run = -1;		// make sure the initial value gets output
    haldata->old_dir = -1;
    haldata->old_err_reset = -1;
    hal_ready(hal_comp_id);
    
    /* here's the meat of the program.  loop until done (which may be never) */
    while (done==0) {
        read_data(mb_ctx, &slavedata, haldata);
        write_data(mb_ctx, &slavedata, haldata);
        /* don't want to scan too fast, and shouldn't delay more than a few seconds */
        if (haldata->looptime < 0.001) haldata->looptime = 0.001;
        if (haldata->looptime > 2.0) haldata->looptime = 2.0;
        loop_timespec.tv_sec = (time_t)(haldata->looptime);
        loop_timespec.tv_nsec = (long)((haldata->looptime - loop_timespec.tv_sec) * 1000000000l);
        nanosleep(&loop_timespec, &remaining);
    }
    
    retval = 0;	/* if we get here, then everything is fine, so just clean up and exit */
out_closeHAL:
    hal_exit(hal_comp_id);
out_close:
    modbus_close(mb_ctx);
    modbus_free(mb_ctx);
out_noclose:
    return retval;
}