summaryrefslogtreecommitdiff
path: root/src/hal/drivers/pluto_step_firmware/main.v
blob: c92fe1c52558c6ee4ec7b3dace087ce65cd128c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
//    This is a component of pluto_servo, a PWM servo driver and quadrature
//    counter for emc2
//    Copyright 2006 Jeff Epler <jepler@unpythonic.net>
//
//    This program is free software; you can redistribute it and/or modify
//    it under the terms of the GNU General Public License as published by
//    the Free Software Foundation; either version 2 of the License, or
//    (at your option) any later version.
//
//    This program is distributed in the hope that it will be useful,
//    but WITHOUT ANY WARRANTY; without even the implied warranty of
//    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//    GNU General Public License for more details.
//
//    You should have received a copy of the GNU General Public License
//    along with this program; if not, write to the Free Software
//    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

module main(clk, led, nConfig, epp_nReset, pport_data, nWrite, nWait, nDataStr,
	nAddrStr, dout, din, step, dir);
parameter W=10;
parameter F=11;
parameter T=4;
input clk;
output led, nConfig;
inout [7:0] pport_data;
input nWrite;
output nWait;
input nDataStr, nAddrStr, epp_nReset;

input [15:0] din;

reg Spolarity;
reg[13:0] real_dout; output [13:0] dout = do_tristate ? 14'bZ : real_dout; 
wire[3:0] real_step; output [3:0] step = do_tristate ? 4'bZ : real_step ^ {4{Spolarity}};
wire[3:0] real_dir; output [3:0] dir = do_tristate ? 4'bZ : real_dir;

wire [W+F-1:0] pos0, pos1, pos2, pos3;
reg  [F:0]     vel0, vel1, vel2, vel3;
reg [T-1:0] dirtime, steptime;
reg [1:0] tap;

reg [10:0] div2048;
wire stepcnt = ~|(div2048[5:0]);

always @(posedge clk) begin
    div2048 <= div2048 + 1'd1;
end

wire do_enable_wdt, do_tristate;
wdt w(clk, do_enable_wdt, &div2048, do_tristate);

stepgen #(W,F,T) s0(clk, stepcnt, pos0, vel0, dirtime, steptime, real_step[0], real_dir[0], tap);
stepgen #(W,F,T) s1(clk, stepcnt, pos1, vel1, dirtime, steptime, real_step[1], real_dir[1], tap);
stepgen #(W,F,T) s2(clk, stepcnt, pos2, vel2, dirtime, steptime, real_step[2], real_dir[2], tap);
stepgen #(W,F,T) s3(clk, stepcnt, pos3, vel3, dirtime, steptime, real_step[3], real_dir[3], tap);

// EPP stuff
wire EPP_write = ~nWrite;
wire EPP_read = nWrite;
wire EPP_addr_strobe = ~nAddrStr;
wire EPP_data_strobe = ~nDataStr;
wire EPP_strobe = EPP_data_strobe | EPP_addr_strobe;

wire EPP_wait; assign nWait = ~EPP_wait;
wire [7:0] EPP_datain = pport_data;
wire [7:0] EPP_dataout; assign pport_data = EPP_dataout;

reg [4:0] EPP_strobe_reg;
always @(posedge clk) EPP_strobe_reg <= {EPP_strobe_reg[3:0], EPP_strobe};
wire EPP_strobe_edge1 = (EPP_strobe_reg[2:1]==2'b01);

// reg led;

assign EPP_wait = EPP_strobe_reg[4];
wire[15:0] EPP_dataword = {EPP_datain, lowbyte};
reg[4:0] addr_reg;
reg[7:0] lowbyte;

always @(posedge clk)
    if(EPP_strobe_edge1 & EPP_write & EPP_addr_strobe) begin
        addr_reg <= EPP_datain[4:0];
    end
    else if(EPP_strobe_edge1 & !EPP_addr_strobe) addr_reg <= addr_reg + 4'd1;
always @(posedge clk) begin
    if(EPP_strobe_edge1 & EPP_write & EPP_data_strobe) begin
        if(addr_reg[3:0] == 4'd1)      vel0 <= EPP_dataword[F:0];
        else if(addr_reg[3:0] == 4'd3) vel1 <= EPP_dataword[F:0];
        else if(addr_reg[3:0] == 4'd5) vel2 <= EPP_dataword[F:0];
        else if(addr_reg[3:0] == 4'd7) vel3 <= EPP_dataword[F:0];
        else if(addr_reg[3:0] == 4'd9) begin
            real_dout <= { EPP_datain[5:0], lowbyte };
        end
        else if(addr_reg[3:0] == 4'd11) begin
	    tap <= lowbyte[7:6];
            steptime <= lowbyte[T-1:0];

            Spolarity <= EPP_datain[7];
	    // EPP_datain[6] is do_enable_wdt
            dirtime <= EPP_datain[T-1:0];
        end
        else lowbyte <= EPP_datain;
    end
end

reg [31:0] data_buf;

always @(posedge clk) begin
    if(EPP_strobe_edge1 & EPP_read && addr_reg[1:0] == 2'd0) begin
        if(addr_reg[4:2] == 3'd0) data_buf <= pos0;
        else if(addr_reg[4:2] == 3'd1) data_buf <= pos1;
        else if(addr_reg[4:2] == 3'd2) data_buf <= pos2;
        else if(addr_reg[4:2] == 3'd3) data_buf <= pos3;
        else if(addr_reg[4:2] == 3'd4)
            data_buf <= din;
    end
end

// the addr_reg test looks funny because it is auto-incremented in an always
// block so "1" reads the low byte, "2 and "3" read middle bytes, and "0"
// reads the high byte I have a feeling that I'm doing this in the wrong way.
wire [7:0] data_reg = addr_reg[1:0] == 2'd1 ? data_buf[7:0] :
                         (addr_reg[1:0] == 2'd2 ? data_buf[15:8] :
                         (addr_reg[1:0] == 2'd3 ? data_buf[23:16] :
                         data_buf[31:24]));

wire [7:0] EPP_data_mux = data_reg;
assign EPP_dataout = (EPP_read & EPP_wait) ? EPP_data_mux : 8'hZZ;
// assign do_enable_wdt = EPP_strobe_edge1 & EPP_write & EPP_data_strobe & (addr_reg[3:0] == 4'd9) & EPP_datain[6];
// assign led = do_tristate ? 1'BZ : (real_step[0] ^ real_dir[0]);
assign led = do_tristate ? 1'bZ : (real_step[0] ^ real_dir[0]);
assign nConfig = epp_nReset; // 1'b1;
assign do_enable_wdt = EPP_strobe_edge1 & EPP_write & EPP_data_strobe & (addr_reg[3:0] == 4'd9) & EPP_datain[6];
endmodule