1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
|
//
// Copyright (C) 2010 Andy Pugh
// Heavily based on pwmgen.c (C) Sebastian Kuzminsky
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
//
#include <linux/slab.h>
#include "rtapi.h"
#include "rtapi_string.h"
#include "rtapi_math.h"
#include "hal.h"
#include "hal/drivers/mesa-hostmot2/hostmot2.h"
void hm2_tp_pwmgen_handle_pwm_frequency(hostmot2_t *hm2) {
u32 dds;
int deadtime;
int i;
if (hm2->tp_pwmgen.hal->param.pwm_frequency < 1) {
HM2_ERR("3pwmgen.pwm_frequency %d is too low, setting to 1\n",
hm2->tp_pwmgen.hal->param.pwm_frequency);
hm2->tp_pwmgen.hal->param.pwm_frequency = 1;
}
//
// pwm_frequency is the user's desired PWM frequency in Hz
//
// PWMClock is controlled by the 16-bit PWM Master Rate DDS Register:
// PWMClock = ClockHigh * DDS / 65536
//
// Counter is fixed at 11 bits wide for 3-Phase PWM.
// The key equation is:
// PWMFreq = PWMClock / 2048
// Solve for DDS:
// PWMFreq * (65536 * 2048) = ClockHigh * DDS
// DDS = (PWMFreq * 65536 * 2048) / ClockHigh
//
// check that the frequency is achievable
dds = ((double)hm2->tp_pwmgen.hal->param.pwm_frequency * 65536.0 * 2048.0)
/ (double)hm2->tp_pwmgen.clock_frequency;
if (dds < 65536) {
hm2->tp_pwmgen.pwmgen_master_rate_dds_reg = dds;
} else {
// not possible so try the fastest we can
// PWMFreq = (ClockHigh * DDS) / (65536 * 2048)
dds = 65535;
hm2->tp_pwmgen.hal->param.pwm_frequency =
((double)hm2->tp_pwmgen.clock_frequency * 65535.0)
/ (65536.0 * 2048.0);
HM2_ERR("max PWM frequency is %d Hz\n",
hm2->tp_pwmgen.hal->param.pwm_frequency);
hm2->tp_pwmgen.pwmgen_master_rate_dds_reg = dds;
}
// Now recalculate the deadtime.
// This is specified in nS in the pin but 2/TPPWMCLK in the register.
// = (2*65536*1e9 / ClockHigh*dds)nS
for (i=0; i < hm2->tp_pwmgen.num_instances; i++) {
if (hm2->tp_pwmgen.instance[i].hal.param.sampletime > 1){
HM2_ERR("Max sampletime is 1 (end of PWM cycle");
hm2->tp_pwmgen.instance[i].hal.param.sampletime = 1;
}
else if (hm2->tp_pwmgen.instance[i].hal.param.sampletime < 0){
HM2_ERR("Min sampletime is 0 (beginning of PWM cycle");
hm2->tp_pwmgen.instance[i].hal.param.sampletime = 0;
}
deadtime = (hm2->tp_pwmgen.instance[i].hal.param.deadzone
* hm2->tp_pwmgen.clock_frequency * dds) / (2 * 65536 * 1e9);
if (deadtime > 511){
deadtime = 511;
hm2->tp_pwmgen.instance[i].hal.param.deadzone =
((double)deadtime * 2.0 * 65536.0 * 1.0e9)
/((double)hm2->tp_pwmgen.clock_frequency * dds);
HM2_ERR("At this PWM frequency the maximum deadtime is %dnS\n",
(int)hm2->tp_pwmgen.instance[i].hal.param.deadzone);
}
else if (deadtime < 0) {
HM2_ERR("Deadtime must be positive");
deadtime = 0;
hm2->tp_pwmgen.instance[i].hal.param.deadzone = 0;
}
// Now setup the control register
hm2->tp_pwmgen.setup_reg[i] = (
((int)(hm2->tp_pwmgen.instance[i].hal.param.sampletime*1023) << 16)
+((hm2->tp_pwmgen.instance[i].hal.param.faultpolarity != 0) << 15)
+(deadtime));
}
}
void hm2_tp_pwmgen_force_write(hostmot2_t *hm2) {
int i;
if (hm2->tp_pwmgen.num_instances == 0) return;
// This sets the pwmgen_dds register and also the deadtime/sample time
// register
hm2_tp_pwmgen_handle_pwm_frequency(hm2);
// update enable and setup registers
for (i = 0; i < hm2->tp_pwmgen.num_instances; i ++) {
if (*hm2->tp_pwmgen.instance[i].hal.pin.enable)
hm2->tp_pwmgen.enable_reg[i] = 1;
else
hm2->tp_pwmgen.enable_reg[i] = 0;
}
//write out the values to their registers
hm2->llio->write(hm2->llio, hm2->tp_pwmgen.setup_addr, hm2->tp_pwmgen.setup_reg, (hm2->tp_pwmgen.num_instances * sizeof(u32)));
hm2->llio->write(hm2->llio, hm2->tp_pwmgen.enable_addr, hm2->tp_pwmgen.enable_reg, (hm2->tp_pwmgen.num_instances * sizeof(u32)));
hm2->llio->write(hm2->llio, hm2->tp_pwmgen.pwmgen_master_rate_dds_addr, &hm2->tp_pwmgen.pwmgen_master_rate_dds_reg, sizeof(u32));
if ((*hm2->llio->io_error) != 0) return;
for (i = 0; i < hm2->tp_pwmgen.num_instances; i ++) {
hm2->tp_pwmgen.instance[i].written_faultpolarity = hm2->tp_pwmgen.instance[i].hal.param.faultpolarity;
hm2->tp_pwmgen.instance[i].written_deadzone = hm2->tp_pwmgen.instance[i].hal.param.deadzone;
hm2->tp_pwmgen.instance[i].written_sampletime = hm2->tp_pwmgen.instance[i].hal.param.sampletime;
}
hm2->tp_pwmgen.written_pwm_frequency = hm2->tp_pwmgen.hal->param.pwm_frequency;
}
//
// Update the Registers of all Three Phase pwmgen instances that need it
//
void hm2_tp_pwmgen_write(hostmot2_t *hm2) {
int i;
if (hm2->tp_pwmgen.num_instances == 0) return;
// check pwm frequency
if (hm2->tp_pwmgen.hal->param.pwm_frequency != hm2->tp_pwmgen.written_pwm_frequency) goto force_write;
// update enable register?
for (i = 0; i < hm2->tp_pwmgen.num_instances; i ++) {
if ((hm2->tp_pwmgen.instance[i].hal.param.deadzone != hm2->tp_pwmgen.instance[i].written_deadzone)
|| (hm2->tp_pwmgen.instance[i].hal.param.sampletime != hm2->tp_pwmgen.instance[i].written_sampletime)
|| (hm2->tp_pwmgen.instance[i].hal.param.faultpolarity != hm2->tp_pwmgen.instance[i].written_faultpolarity))
goto force_write;
// The enable register is a little odd. Writing a 1 to bit0 of the
// register is a request to enable, however the state of the bit,
// and the physical amp-enable pin, depends on the fault status. So
// rather than check with a "written_enable" variable we attempt to
// enable if there is a mismatch between the hal-pin and the enable
// bit.
if ((*hm2->tp_pwmgen.instance[i].hal.pin.enable != (hm2->tp_pwmgen.enable_reg[i] & 1)))
goto force_write;
}
return;
force_write:
hm2_tp_pwmgen_force_write(hm2);
}
//
// Read the fault bit for each instance
//
void hm2_tp_pwmgen_read(hostmot2_t *hm2) {
int i;
hm2->llio->read(hm2->llio, hm2->tp_pwmgen.enable_addr, hm2->tp_pwmgen.enable_reg, (hm2->tp_pwmgen.num_instances * sizeof(u32)));
for (i = 0 ; i < hm2->tp_pwmgen.num_instances ; i++) {
*hm2->tp_pwmgen.instance[i].hal.pin.fault
= (hm2->tp_pwmgen.enable_reg[i] & 2);
}
}
int hm2_tp_pwmgen_parse_md(hostmot2_t *hm2, int md_index) {
hm2_module_descriptor_t *md = &hm2->md[md_index];
int r;
//
// some standard sanity checks
//
if (!hm2_md_is_consistent_or_complain(hm2, md_index, 0, 4, 4, 0x0003)) {
HM2_ERR("inconsistent Module Descriptor!\n");
return -EINVAL;
}
if (hm2->tp_pwmgen.num_instances != 0) {
HM2_ERR(
"found duplicate Module Descriptor for %s (inconsistent firmware), not loading driver\n",
hm2_get_general_function_name(md->gtag)
);
return -EINVAL;
}
if (hm2->config.num_tp_pwmgens > md->instances) {
HM2_ERR(
"config.num_3pwmgens=%d, but only %d are available, not loading driver\n",
hm2->config.num_tp_pwmgens,
md->instances
);
return -EINVAL;
}
if (hm2->config.num_tp_pwmgens == 0) {
return 0;
}
//
// looks good, start initializing
//
if (hm2->config.num_tp_pwmgens == -1) {
hm2->tp_pwmgen.num_instances = md->instances;
} else {
hm2->tp_pwmgen.num_instances = hm2->config.num_tp_pwmgens;
}
// allocate the module-global HAL shared memory
hm2->tp_pwmgen.instance = (hm2_tp_pwmgen_instance_t *)hal_malloc(hm2->tp_pwmgen.num_instances * sizeof(hm2_tp_pwmgen_instance_t));
if (hm2->tp_pwmgen.instance == NULL) {
HM2_ERR("out of memory!\n");
r = -ENOMEM;
goto fail0;
}
hm2->tp_pwmgen.hal = (hm2_tp_pwmgen_global_hal_t *)hal_malloc(sizeof(hm2_tp_pwmgen_global_hal_t));
if (hm2->tp_pwmgen.instance == NULL) {
HM2_ERR("out of memory!\n");
r = -ENOMEM;
goto fail0;
}
hm2->tp_pwmgen.clock_frequency = md->clock_freq;
hm2->tp_pwmgen.version = md->version;
hm2->tp_pwmgen.pwm_value_addr = md->base_address + (0 * md->register_stride);
hm2->tp_pwmgen.pwmgen_master_rate_dds_addr = md->base_address + (3 * md->register_stride);
hm2->tp_pwmgen.enable_addr = md->base_address + (1 * md->register_stride);
hm2->tp_pwmgen.setup_addr = md->base_address + (2 * md->register_stride);
//Allocate some memory for the parameter registers. The value equivalent is handled in the tram section
hm2->tp_pwmgen.setup_reg = (u32 *)kmalloc(hm2->tp_pwmgen.num_instances * sizeof(u32), GFP_KERNEL);
if (hm2->tp_pwmgen.setup_reg == NULL) {
HM2_ERR("out of memory!\n");
r = -ENOMEM;
goto fail1;
}
hm2->tp_pwmgen.enable_reg = (u32 *)kmalloc(hm2->tp_pwmgen.num_instances * sizeof(u32), GFP_KERNEL);
if (hm2->tp_pwmgen.enable_reg == NULL) {
HM2_ERR("out of memory!\n");
r = -ENOMEM;
goto fail2;
}
// Register the PWM values with the TRAM
r = hm2_register_tram_write_region(hm2, hm2->tp_pwmgen.pwm_value_addr, (hm2->tp_pwmgen.num_instances * sizeof(u32)), &hm2->tp_pwmgen.pwm_value_reg);
if (r < 0) {
HM2_ERR("error registering tram write region for 3PWM Value register (%d)\n", r);
goto fail2;
}
// export to HAL
// FIXME: r hides the r in enclosing function, and it returns the wrong thing
{
int i;
int r;
char name[HAL_NAME_LEN + 1];
// this hal parameter affects all the 3-Phase pwmgen instances
r = hal_param_u32_newf(
HAL_RW,
&(hm2->tp_pwmgen.hal->param.pwm_frequency),
hm2->llio->comp_id,
"%s.3pwmgen.frequency",
hm2->llio->name
);
if (r < 0) {
HM2_ERR("error adding pin 3pwmgen.frequency param, aborting\n");
goto fail2;
}
hm2->tp_pwmgen.hal->param.pwm_frequency = 20000;
hm2->tp_pwmgen.written_pwm_frequency = 0; // force a write
for (i = 0; i < hm2->tp_pwmgen.num_instances; i ++) {
// pins
rtapi_snprintf(name, sizeof(name), "%s.3pwmgen.%02d.A-value", hm2->llio->name, i);
r = hal_pin_float_new(name, HAL_IN, &(hm2->tp_pwmgen.instance[i].hal.pin.Avalue), hm2->llio->comp_id);
if (r < 0) {
HM2_ERR("error adding pin '%s', aborting\n", name);
goto fail2;
}
rtapi_snprintf(name, sizeof(name), "%s.3pwmgen.%02d.B-value", hm2->llio->name, i);
r = hal_pin_float_new(name, HAL_IN, &(hm2->tp_pwmgen.instance[i].hal.pin.Bvalue), hm2->llio->comp_id);
if (r < 0) {
HM2_ERR("error adding pin '%s', aborting\n", name);
goto fail2;
}
rtapi_snprintf(name, sizeof(name), "%s.3pwmgen.%02d.C-value", hm2->llio->name, i);
r = hal_pin_float_new(name, HAL_IN, &(hm2->tp_pwmgen.instance[i].hal.pin.Cvalue), hm2->llio->comp_id);
if (r < 0) {
HM2_ERR("error adding pin '%s', aborting\n", name);
goto fail2;
}
rtapi_snprintf(name, sizeof(name), "%s.3pwmgen.%02d.enable", hm2->llio->name, i);
r = hal_pin_bit_new(name, HAL_IN, &(hm2->tp_pwmgen.instance[i].hal.pin.enable), hm2->llio->comp_id);
if (r < 0) {
HM2_ERR("error adding pin '%s', aborting\n", name);
goto fail2;
}
rtapi_snprintf(name, sizeof(name), "%s.3pwmgen.%02d.fault", hm2->llio->name, i);
r = hal_pin_bit_new(name, HAL_OUT, &(hm2->tp_pwmgen.instance[i].hal.pin.fault), hm2->llio->comp_id);
if (r < 0) {
HM2_ERR("error adding pin '%s', aborting\n", name);
goto fail2;
}
// parameters
rtapi_snprintf(name, sizeof(name), "%s.3pwmgen.%02d.scale", hm2->llio->name, i);
r = hal_param_float_new(name, HAL_RW, &(hm2->tp_pwmgen.instance[i].hal.param.scale), hm2->llio->comp_id);
if (r < 0) {
HM2_ERR("error adding param '%s', aborting\n", name);
goto fail2;
}
rtapi_snprintf(name, sizeof(name), "%s.3pwmgen.%02d.deadtime", hm2->llio->name, i);
r = hal_param_float_new(name, HAL_RW, &(hm2->tp_pwmgen.instance[i].hal.param.deadzone), hm2->llio->comp_id);
if (r < 0) {
HM2_ERR("error adding param '%s', aborting\n", name);
goto fail2;
}
rtapi_snprintf(name, sizeof(name), "%s.3pwmgen.%02d.fault-invert", hm2->llio->name, i);
r = hal_param_bit_new(name, HAL_RW, &(hm2->tp_pwmgen.instance[i].hal.param.faultpolarity), hm2->llio->comp_id);
if (r < 0) {
HM2_ERR("error adding param '%s', aborting\n", name);
goto fail2;
}
rtapi_snprintf(name, sizeof(name), "%s.3pwmgen.%02d.sample-time", hm2->llio->name, i);
r = hal_param_float_new(name, HAL_RW, &(hm2->tp_pwmgen.instance[i].hal.param.sampletime), hm2->llio->comp_id);
if (r < 0) {
HM2_ERR("error adding param '%s', aborting\n", name);
goto fail2;
}
// init hal objects
*(hm2->tp_pwmgen.instance[i].hal.pin.enable) = 0;
*(hm2->tp_pwmgen.instance[i].hal.pin.Avalue) = 0.0;
*(hm2->tp_pwmgen.instance[i].hal.pin.Bvalue) = 0.0;
*(hm2->tp_pwmgen.instance[i].hal.pin.Cvalue) = 0.0;
hm2->tp_pwmgen.instance[i].hal.param.scale = 1.0;
hm2->tp_pwmgen.instance[i].hal.param.sampletime = 0.5;
hm2->tp_pwmgen.instance[i].hal.param.faultpolarity = 0.0; //active low
hm2->tp_pwmgen.instance[i].hal.param.deadzone = 5000; // 5000nS conservative deadzone for safety
hm2->tp_pwmgen.instance[i].written_sampletime = -666; // force an update at the start
}
}
return hm2->tp_pwmgen.num_instances;
fail2:
kfree(hm2->tp_pwmgen.enable_reg);
fail1:
kfree(hm2->tp_pwmgen.setup_reg);
fail0:
hm2->tp_pwmgen.num_instances = 0;
return r;
}
void hm2_tp_pwmgen_print_module(hostmot2_t *hm2) {
int i;
HM2_PRINT("3-phase PWMGen: %d\n", hm2->tp_pwmgen.num_instances);
if (hm2->tp_pwmgen.num_instances <= 0) return;
HM2_PRINT(" clock_frequency: %d Hz (%s MHz)\n", hm2->tp_pwmgen.clock_frequency, hm2_hz_to_mhz(hm2->tp_pwmgen.clock_frequency));
HM2_PRINT(" version: %d\n", hm2->tp_pwmgen.version);
HM2_PRINT(" pwmgen_master_rate_dds: 0x%08X (%d)\n", hm2->tp_pwmgen.pwmgen_master_rate_dds_reg, hm2->tp_pwmgen.pwmgen_master_rate_dds_reg);
HM2_PRINT(" pwmgen_master_rate_dds_addr: 0x%04X\n", hm2->tp_pwmgen.pwmgen_master_rate_dds_addr);
for (i = 0; i < hm2->tp_pwmgen.num_instances; i ++) {
HM2_PRINT(" instance %d:\n", i);
HM2_PRINT(" hw:\n");
HM2_PRINT(" pwm_value_addr: 0x%04X\n", hm2->tp_pwmgen.pwm_value_addr);
HM2_PRINT(" pwm_val:0x%08X\n", hm2->tp_pwmgen.pwm_value_reg[i]);
HM2_PRINT(" enable: 0x%08X\n", hm2->tp_pwmgen.enable_reg[i]);
HM2_PRINT(" setup: 0x%08X\n", hm2->tp_pwmgen.setup_reg[i]);
}
}
void hm2_tp_pwmgen_prepare_tram_write(hostmot2_t *hm2) {
int i;
if (hm2->tp_pwmgen.num_instances <= 0) return;
for (i = 0; i < hm2->tp_pwmgen.num_instances; i ++) {
double scaled_Avalue;
double scaled_Bvalue;
double scaled_Cvalue;
// When disabled the 3pwmgen sets both sets of drivers to zero.
// No need to handle that here (In contrast to the conventional
// pwmgen)
// Check for /0 problems
if (hm2->tp_pwmgen.instance[i].hal.param.scale ==0) {
hm2->tp_pwmgen.instance[i].hal.param.scale = 1;
HM2_ERR("3pwmgen scale must be greater than zero. Scale set to %i", (int)hm2->tp_pwmgen.instance[i].hal.param.scale);
}
scaled_Avalue = (*hm2->tp_pwmgen.instance[i].hal.pin.Avalue / hm2->tp_pwmgen.instance[i].hal.param.scale);
scaled_Bvalue = (*hm2->tp_pwmgen.instance[i].hal.pin.Bvalue / hm2->tp_pwmgen.instance[i].hal.param.scale);
scaled_Cvalue = (*hm2->tp_pwmgen.instance[i].hal.pin.Cvalue / hm2->tp_pwmgen.instance[i].hal.param.scale);
if (scaled_Avalue > 1.0) scaled_Avalue = 1.0;
else if (scaled_Avalue < -1.0) scaled_Avalue = -1.0;
if (scaled_Bvalue > 1.0) scaled_Bvalue = 1.0;
else if (scaled_Avalue < -1.0) scaled_Avalue = -1.0;
if (scaled_Cvalue > 1.0) scaled_Cvalue = 1.0;
else if (scaled_Avalue < -1.0) scaled_Avalue = -1.0;
// duty_cycle goes from 0.0 to 1.0, and needs to be puffed out to 10 bits
hm2->tp_pwmgen.pwm_value_reg[i] = (
((long)(scaled_Cvalue * (511.0) + 512.0) << 20)
+ ((long)(scaled_Bvalue * (511.0) + 512.0) << 10)
+ ((long)(scaled_Avalue * (511.0) + 512.0) << 0)
);
}
}
void hm2_tp_pwmgen_cleanup(hostmot2_t *hm2) {
if (hm2->tp_pwmgen.num_instances <= 0) return;
if (hm2->tp_pwmgen.setup_reg != NULL) {
kfree(hm2->tp_pwmgen.setup_reg);
hm2->tp_pwmgen.enable_reg = NULL;
}
if (hm2->tp_pwmgen.enable_reg != NULL) {
kfree(hm2->tp_pwmgen.enable_reg);
hm2->tp_pwmgen.enable_reg = NULL;
}
hm2->tp_pwmgen.num_instances = 0;
}
|