1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
|
//
// Copyright (C) 2007-2008 Sebastian Kuzminsky
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
//
#include <linux/slab.h>
#include "rtapi.h"
#include "rtapi_string.h"
#include "rtapi_math.h"
#include "hal.h"
#include "hal/drivers/mesa-hostmot2/hostmot2.h"
void hm2_pwmgen_handle_pwm_frequency(hostmot2_t *hm2) {
u32 dds;
if (hm2->pwmgen.hal->param.pwm_frequency < 1) {
HM2_ERR("pwmgen.pwm_frequency %d is too low, setting to 1\n", hm2->pwmgen.hal->param.pwm_frequency);
hm2->pwmgen.hal->param.pwm_frequency = 1;
}
//
// hal->param.pwm_frequency is the user's desired PWM frequency in Hz
//
// We get to play with PWMClock (frequency at which the PWM counter
// runs) and PWMBits (number of bits of the PWM Value Register that
// are used to hold the count, this affects resolution).
//
// PWMClock is controlled by the 16-bit PWM Master Rate DDS Register:
// PWMClock = ClockHigh * DDS / 65536
//
// PWMBits is 9-12. More is better (higher resolution).
//
// The key equation is:
// PWMFreq = PWMClock / (2^PWMBits)
//
// This can be rewritten as:
// PWMFreq = (ClockHigh * DDS / 65536) / (2^PWMBits)
// PWMFreq = (ClockHigh * DDS) / (65536 * 2^PWMBits)
//
// Solve for DDS:
// PWMFreq * (65536 * 2^PWMBits) = ClockHigh * DDS
// DDS = (PWMFreq * 65536 * 2^PWMBits) / ClockHigh
//
// can we do it with 12 bits?
dds = ((double)hm2->pwmgen.hal->param.pwm_frequency * 65536.0 * 4096.0) / (double)hm2->pwmgen.clock_frequency;
if (dds < 65536) {
hm2->pwmgen.pwmgen_master_rate_dds_reg = dds;
hm2->pwmgen.pwm_bits = 12;
return;
}
// try 11 bits
dds = ((double)hm2->pwmgen.hal->param.pwm_frequency * 65536.0 * 2048.0) / (double)hm2->pwmgen.clock_frequency;
if (dds < 65536) {
hm2->pwmgen.pwmgen_master_rate_dds_reg = dds;
hm2->pwmgen.pwm_bits = 11;
return;
}
// try 10 bits
dds = ((double)hm2->pwmgen.hal->param.pwm_frequency * 65536.0 * 1024.0) / (double)hm2->pwmgen.clock_frequency;
if (dds < 65536) {
hm2->pwmgen.pwmgen_master_rate_dds_reg = dds;
hm2->pwmgen.pwm_bits = 10;
return;
}
// try 9 bits
dds = ((double)hm2->pwmgen.hal->param.pwm_frequency * 65536.0 * 512.0) / (double)hm2->pwmgen.clock_frequency;
if (dds < 65536) {
hm2->pwmgen.pwmgen_master_rate_dds_reg = dds;
hm2->pwmgen.pwm_bits = 9;
return;
}
// no joy, lower frequency until it'll work with 9 bits
// From above:
// PWMFreq = (ClockHigh * DDS) / (65536 * 2^PWMBits)
hm2->pwmgen.hal->param.pwm_frequency = ((double)hm2->pwmgen.clock_frequency * 65535.0) / (65536.0 * 512.0);
HM2_ERR("max PWM frequency is %d Hz\n", hm2->pwmgen.hal->param.pwm_frequency);
hm2->pwmgen.pwmgen_master_rate_dds_reg = 65535;
hm2->pwmgen.pwm_bits = 9;
}
void hm2_pwmgen_handle_pdm_frequency(hostmot2_t *hm2) {
u32 dds;
if (hm2->pwmgen.hal->param.pdm_frequency < 1) {
HM2_ERR("pwmgen.pdm_frequency %d is too low, setting to 1\n", hm2->pwmgen.hal->param.pdm_frequency);
hm2->pwmgen.hal->param.pdm_frequency = 1;
}
//
// hal->param.pdm_frequency is the user's desired PDM frequency in Hz
//
// We get to play with PDMClock (frequency at which the PDM counter
// runs) only - PDMBits (number of bits of the PDM Value Register that
// are used to hold the count, this affects resolution) is fixed at 12.
//
// PDMClock is controlled by the 16-bit PDM Master Rate DDS Register:
// PDMClock = ClockHigh * DDS / 65536
//
// PDMBits is 12.
//
// The key equation is:
// PDMFreq = PDMClock / (2^PDMBits)
//
// This can be rewritten as:
// PDMFreq = (ClockHigh * DDS / 65536) / (2^PDMBits)
// PDMFreq = (ClockHigh * DDS) / (65536 * 2^PDMBits)
// PDMFreq = (ClockHigh * DDS) / (65536 * 4096)
//
// The PDMFreq is the frequency at which the 4096-pulse pattern
// repeats. The pulse frequency is 4096 times higher:
//
// PulseFreq = PDMFreq * 4096
// PulseFreq = (ClockHigh * DDS) / 65536
//
// Solve for DDS:
// PDMFreq * (65536 * 4096) = ClockHigh * DDS
// DDS = (PDMFreq * 65536 * 4096) / ClockHigh
//
// PulseFreq = (ClockHigh * DDS) / 65536
// DDS = (PulseFreq * 65536) / ClockHigh
//
// can we do it with 12 bits?
dds = ((double)hm2->pwmgen.hal->param.pdm_frequency * 65536.0) / (double)hm2->pwmgen.clock_frequency;
if (dds == 0) {
// too slow, set frequency to minimum
// From above:
// PulseFreq = (ClockHigh * DDS) / 65536
dds = 1;
hm2->pwmgen.hal->param.pdm_frequency = ((double)hm2->pwmgen.clock_frequency * (double)dds) / 65536.0;
HM2_ERR("min PDM frequency is %d Hz\n", hm2->pwmgen.hal->param.pdm_frequency);
hm2->pwmgen.pdmgen_master_rate_dds_reg = 1;
return;
}
if (dds < 65536) {
// ok
hm2->pwmgen.pdmgen_master_rate_dds_reg = dds;
return;
}
// user wants too much, lower frequency until it'll work with 12 bits
// From above:
// PulseFreq = (ClockHigh * DDS) / 65536
hm2->pwmgen.hal->param.pdm_frequency = ((double)hm2->pwmgen.clock_frequency * 65535.0) / 65536.0;
HM2_ERR("max PDM frequency is %d Hz\n", hm2->pwmgen.hal->param.pdm_frequency);
hm2->pwmgen.pdmgen_master_rate_dds_reg = 65535;
}
void hm2_pwmgen_force_write(hostmot2_t *hm2) {
int i;
u32 pwm_width;
if (hm2->pwmgen.num_instances == 0) return;
hm2_pwmgen_handle_pwm_frequency(hm2);
hm2_pwmgen_handle_pdm_frequency(hm2);
switch (hm2->pwmgen.pwm_bits) {
case 9: {
pwm_width = 0x00;
break;
}
case 10: {
pwm_width = 0x01;
break;
}
case 11: {
pwm_width = 0x02;
break;
}
case 12: {
pwm_width = 0x03;
break;
}
default: {
// this should never happen
HM2_ERR("invalid pwmgen.bits=%d, resetting to 9\n", hm2->pwmgen.pwm_bits);
hm2->pwmgen.pwm_bits = 9;
pwm_width = 0x00;
break;
}
}
for (i = 0; i < hm2->pwmgen.num_instances; i ++) {
u32 double_buffered;
hm2->pwmgen.pwm_mode_reg[i] = pwm_width;
switch (hm2->pwmgen.instance[i].hal.param.output_type) {
case HM2_PWMGEN_OUTPUT_TYPE_PWM: {
// leave the Output Mode bits 0
double_buffered = 1;
break;
}
case HM2_PWMGEN_OUTPUT_TYPE_UP_DOWN: {
hm2->pwmgen.pwm_mode_reg[i] |= 0x2 << 3;
double_buffered = 1;
break;
}
case HM2_PWMGEN_OUTPUT_TYPE_PDM: {
hm2->pwmgen.pwm_mode_reg[i] |= 0x3 << 3;
double_buffered = 0;
break;
}
case HM2_PWMGEN_OUTPUT_TYPE_PWM_SWAPPED: { // Dir & PWM (ie with the output pins swapped), "for locked antiphase"
hm2->pwmgen.pwm_mode_reg[i] |= 0x1 << 3;
double_buffered = 1;
break;
}
default: { // unknown pwm mode! complain and switch to pwm/dir
HM2_ERR(
"invalid pwmgen output_type %d requested\n",
hm2->pwmgen.instance[i].hal.param.output_type
);
HM2_ERR(
"supported .output-type values are: %d (PWM & Dir), %d (Up & Down), %d (PDM & Dir), and %d (Dir & PWM)\n",
HM2_PWMGEN_OUTPUT_TYPE_PWM,
HM2_PWMGEN_OUTPUT_TYPE_UP_DOWN,
HM2_PWMGEN_OUTPUT_TYPE_PDM,
HM2_PWMGEN_OUTPUT_TYPE_PWM_SWAPPED
);
HM2_ERR("switching to 1 (PWM & Dir)\n");
hm2->pwmgen.instance[i].hal.param.output_type = HM2_PWMGEN_OUTPUT_TYPE_PWM;
double_buffered = 1;
// leave the Output Mode bits 0
break;
}
}
hm2->pwmgen.pwm_mode_reg[i] |= (double_buffered << 5);
}
// update enable register
hm2->pwmgen.enable_reg = 0;
for (i = 0; i < hm2->pwmgen.num_instances; i ++) {
if (*(hm2->pwmgen.instance[i].hal.pin.enable)) {
hm2->pwmgen.enable_reg |= (1 << i);
}
}
hm2->llio->write(hm2->llio, hm2->pwmgen.pwm_mode_addr, hm2->pwmgen.pwm_mode_reg, (hm2->pwmgen.num_instances * sizeof(u32)));
hm2->llio->write(hm2->llio, hm2->pwmgen.enable_addr, &hm2->pwmgen.enable_reg, sizeof(u32));
hm2->llio->write(hm2->llio, hm2->pwmgen.pwmgen_master_rate_dds_addr, &hm2->pwmgen.pwmgen_master_rate_dds_reg, sizeof(u32));
hm2->llio->write(hm2->llio, hm2->pwmgen.pdmgen_master_rate_dds_addr, &hm2->pwmgen.pdmgen_master_rate_dds_reg, sizeof(u32));
if ((*hm2->llio->io_error) != 0) return;
for (i = 0; i < hm2->pwmgen.num_instances; i ++) {
hm2->pwmgen.instance[i].written_output_type = hm2->pwmgen.instance[i].hal.param.output_type;
hm2->pwmgen.instance[i].written_enable = *hm2->pwmgen.instance[i].hal.pin.enable;
}
hm2->pwmgen.written_pwm_frequency = hm2->pwmgen.hal->param.pwm_frequency;
hm2->pwmgen.written_pdm_frequency = hm2->pwmgen.hal->param.pdm_frequency;
}
//
// Update the PWM Mode Registers of all pwmgen instances that need it
//
void hm2_pwmgen_write(hostmot2_t *hm2) {
int i;
if (hm2->pwmgen.num_instances == 0) return;
// check output type
for (i = 0; i < hm2->pwmgen.num_instances; i ++) {
if (hm2->pwmgen.instance[i].hal.param.output_type != hm2->pwmgen.instance[i].written_output_type) {
goto force_write;
}
}
// check pwm & pdm frequency
if (hm2->pwmgen.hal->param.pwm_frequency != hm2->pwmgen.written_pwm_frequency) goto force_write;
if (hm2->pwmgen.hal->param.pdm_frequency != hm2->pwmgen.written_pdm_frequency) goto force_write;
// update enable register?
for (i = 0; i < hm2->pwmgen.num_instances; i ++) {
if (*(hm2->pwmgen.instance[i].hal.pin.enable) != hm2->pwmgen.instance[i].written_enable) {
goto force_write;
}
}
return;
force_write:
hm2_pwmgen_force_write(hm2);
}
int hm2_pwmgen_parse_md(hostmot2_t *hm2, int md_index) {
hm2_module_descriptor_t *md = &hm2->md[md_index];
int r;
//
// some standard sanity checks
//
if (!hm2_md_is_consistent_or_complain(hm2, md_index, 0, 5, 4, 0x0003)) {
HM2_ERR("inconsistent Module Descriptor!\n");
return -EINVAL;
}
if (hm2->pwmgen.num_instances != 0) {
HM2_ERR(
"found duplicate Module Descriptor for %s (inconsistent firmware), not loading driver\n",
hm2_get_general_function_name(md->gtag)
);
return -EINVAL;
}
if (hm2->config.num_pwmgens > md->instances) {
HM2_ERR(
"config.num_pwmgens=%d, but only %d are available, not loading driver\n",
hm2->config.num_pwmgens,
md->instances
);
return -EINVAL;
}
if (hm2->config.num_pwmgens == 0) {
return 0;
}
//
// looks good, start initializing
//
if (hm2->config.num_pwmgens == -1) {
hm2->pwmgen.num_instances = md->instances;
} else {
hm2->pwmgen.num_instances = hm2->config.num_pwmgens;
}
// allocate the module-global HAL shared memory
hm2->pwmgen.hal = (hm2_pwmgen_module_global_t *)hal_malloc(sizeof(hm2_pwmgen_module_global_t));
if (hm2->pwmgen.hal == NULL) {
HM2_ERR("out of memory!\n");
r = -ENOMEM;
goto fail0;
}
hm2->pwmgen.instance = (hm2_pwmgen_instance_t *)hal_malloc(hm2->pwmgen.num_instances * sizeof(hm2_pwmgen_instance_t));
if (hm2->pwmgen.instance == NULL) {
HM2_ERR("out of memory!\n");
r = -ENOMEM;
goto fail0;
}
hm2->pwmgen.clock_frequency = md->clock_freq;
hm2->pwmgen.version = md->version;
hm2->pwmgen.pwm_value_addr = md->base_address + (0 * md->register_stride);
hm2->pwmgen.pwm_mode_addr = md->base_address + (1 * md->register_stride);
hm2->pwmgen.pwmgen_master_rate_dds_addr = md->base_address + (2 * md->register_stride);
hm2->pwmgen.pdmgen_master_rate_dds_addr = md->base_address + (3 * md->register_stride);
hm2->pwmgen.enable_addr = md->base_address + (4 * md->register_stride);
r = hm2_register_tram_write_region(hm2, hm2->pwmgen.pwm_value_addr, (hm2->pwmgen.num_instances * sizeof(u32)), &hm2->pwmgen.pwm_value_reg);
if (r < 0) {
HM2_ERR("error registering tram write region for PWM Value register (%d)\n", r);
goto fail0;
}
hm2->pwmgen.pwm_mode_reg = (u32 *)kmalloc(hm2->pwmgen.num_instances * sizeof(u32), GFP_KERNEL);
if (hm2->pwmgen.pwm_mode_reg == NULL) {
HM2_ERR("out of memory!\n");
r = -ENOMEM;
goto fail0;
}
// export to HAL
// FIXME: r hides the r in enclosing function, and it returns the wrong thing
{
int i;
int r;
char name[HAL_NAME_LEN + 1];
// these hal parameters affect all pwmgen instances
r = hal_param_u32_newf(
HAL_RW,
&(hm2->pwmgen.hal->param.pwm_frequency),
hm2->llio->comp_id,
"%s.pwmgen.pwm_frequency",
hm2->llio->name
);
if (r < 0) {
HM2_ERR("error adding pwmgen.pwm_frequency param, aborting\n");
goto fail1;
}
hm2->pwmgen.hal->param.pwm_frequency = 20000;
hm2->pwmgen.written_pwm_frequency = 0;
r = hal_param_u32_newf(
HAL_RW,
&(hm2->pwmgen.hal->param.pdm_frequency),
hm2->llio->comp_id,
"%s.pwmgen.pdm_frequency",
hm2->llio->name
);
if (r < 0) {
HM2_ERR("error adding pwmgen.pdm_frequency param, aborting\n");
goto fail1;
}
hm2->pwmgen.hal->param.pdm_frequency = 20000;
hm2->pwmgen.written_pdm_frequency = 0;
for (i = 0; i < hm2->pwmgen.num_instances; i ++) {
// pins
rtapi_snprintf(name, sizeof(name), "%s.pwmgen.%02d.value", hm2->llio->name, i);
r = hal_pin_float_new(name, HAL_IN, &(hm2->pwmgen.instance[i].hal.pin.value), hm2->llio->comp_id);
if (r < 0) {
HM2_ERR("error adding pin '%s', aborting\n", name);
goto fail1;
}
rtapi_snprintf(name, sizeof(name), "%s.pwmgen.%02d.enable", hm2->llio->name, i);
r = hal_pin_bit_new(name, HAL_IN, &(hm2->pwmgen.instance[i].hal.pin.enable), hm2->llio->comp_id);
if (r < 0) {
HM2_ERR("error adding pin '%s', aborting\n", name);
goto fail1;
}
// parameters
rtapi_snprintf(name, sizeof(name), "%s.pwmgen.%02d.scale", hm2->llio->name, i);
r = hal_param_float_new(name, HAL_RW, &(hm2->pwmgen.instance[i].hal.param.scale), hm2->llio->comp_id);
if (r < 0) {
HM2_ERR("error adding param '%s', aborting\n", name);
goto fail1;
}
r = hal_param_s32_newf(
HAL_RW,
&(hm2->pwmgen.instance[i].hal.param.output_type),
hm2->llio->comp_id,
"%s.pwmgen.%02d.output-type",
hm2->llio->name,
i
);
if (r < 0) {
HM2_ERR("error adding param, aborting\n");
goto fail1;
}
// init hal objects
*(hm2->pwmgen.instance[i].hal.pin.enable) = 0;
*(hm2->pwmgen.instance[i].hal.pin.value) = 0.0;
hm2->pwmgen.instance[i].hal.param.scale = 1.0;
hm2->pwmgen.instance[i].hal.param.output_type = HM2_PWMGEN_OUTPUT_TYPE_PWM;
hm2->pwmgen.instance[i].written_output_type = -666; // force an update at the start
hm2->pwmgen.instance[i].written_enable = -666; // force an update at the start
}
}
return hm2->pwmgen.num_instances;
fail1:
kfree(hm2->pwmgen.pwm_mode_reg);
fail0:
hm2->pwmgen.num_instances = 0;
return r;
}
void hm2_pwmgen_cleanup(hostmot2_t *hm2) {
if (hm2->pwmgen.num_instances <= 0) return;
if (hm2->pwmgen.pwm_mode_reg != NULL) {
kfree(hm2->pwmgen.pwm_mode_reg);
hm2->pwmgen.pwm_mode_reg = NULL;
}
hm2->pwmgen.num_instances = 0;
}
void hm2_pwmgen_print_module(hostmot2_t *hm2) {
int i;
HM2_PRINT("PWMGen: %d\n", hm2->pwmgen.num_instances);
if (hm2->pwmgen.num_instances <= 0) return;
HM2_PRINT(" clock_frequency: %d Hz (%s MHz)\n", hm2->pwmgen.clock_frequency, hm2_hz_to_mhz(hm2->pwmgen.clock_frequency));
HM2_PRINT(" version: %d\n", hm2->pwmgen.version);
HM2_PRINT(" pwmgen_master_rate_dds: 0x%08X (%d)\n", hm2->pwmgen.pwmgen_master_rate_dds_reg, hm2->pwmgen.pwmgen_master_rate_dds_reg);
HM2_PRINT(" pdmgen_master_rate_dds: 0x%08X (%d)\n", hm2->pwmgen.pdmgen_master_rate_dds_reg, hm2->pwmgen.pdmgen_master_rate_dds_reg);
HM2_PRINT(" enable: 0x%08X\n", hm2->pwmgen.enable_reg);
HM2_PRINT(" pwm_value_addr: 0x%04X\n", hm2->pwmgen.pwm_value_addr);
HM2_PRINT(" pwm_mode_addr: 0x%04X\n", hm2->pwmgen.pwm_mode_addr);
HM2_PRINT(" pwmgen_master_rate_dds_addr: 0x%04X\n", hm2->pwmgen.pwmgen_master_rate_dds_addr);
HM2_PRINT(" pdmgen_master_rate_dds_addr: 0x%04X\n", hm2->pwmgen.pdmgen_master_rate_dds_addr);
HM2_PRINT(" enable_addr: 0x%04X\n", hm2->pwmgen.enable_addr);
for (i = 0; i < hm2->pwmgen.num_instances; i ++) {
HM2_PRINT(" instance %d:\n", i);
HM2_PRINT(" hw:\n");
HM2_PRINT(
" pwm_val = 0x%08X (%s%d)\n",
hm2->pwmgen.pwm_value_reg[i],
((hm2->pwmgen.pwm_value_reg[i] & 0x80000000) ? "-" : ""),
((hm2->pwmgen.pwm_value_reg[i]>>16) & 0x7fff)
);
HM2_PRINT(" pwm_mode = 0x%08X\n", hm2->pwmgen.pwm_mode_reg[i]);
}
}
void hm2_pwmgen_prepare_tram_write(hostmot2_t *hm2) {
int i;
if (hm2->pwmgen.num_instances <= 0) return;
for (i = 0; i < hm2->pwmgen.num_instances; i ++) {
double scaled_value;
double abs_duty_cycle;
int bits;
// Normally the PWM & Dir IO pins of the pwmgen instance keep doing
// their thing even if the enable bit is low. This is because the
// downstream equipment *should* ignore PWM & Dir if /Enable is
// high (this is how it handles bootup & watchdog bites).
// However, there apparently is equipment that does not behave this
// way, and that benefits from having PWM & Dir go low when /Enable
// goes high. So...
if (*hm2->pwmgen.instance[i].hal.pin.enable == 0) {
hm2->pwmgen.pwm_value_reg[i] = 0;
continue;
}
scaled_value = *hm2->pwmgen.instance[i].hal.pin.value / hm2->pwmgen.instance[i].hal.param.scale;
abs_duty_cycle = fabs(scaled_value);
if (abs_duty_cycle > 1.0) abs_duty_cycle = 1.0;
// duty_cycle goes from 0.0 to 1.0, and needs to be puffed out to pwm_bits (if it's pwm) or 12 (if it's pdm)
if (hm2->pwmgen.instance[i].hal.param.output_type == HM2_PWMGEN_OUTPUT_TYPE_PDM) {
bits = 12;
} else {
bits = hm2->pwmgen.pwm_bits;
}
hm2->pwmgen.pwm_value_reg[i] = abs_duty_cycle * (double)((1 << bits) - 1);
hm2->pwmgen.pwm_value_reg[i] <<= 16;
if (scaled_value < 0) {
hm2->pwmgen.pwm_value_reg[i] |= (1 << 31);
}
}
}
|