1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
|
/********************************************************************
* Description: hal_stg.c
* This is the driver for Servo-To-Go Model I & II board.
*
* Author: Alex Joni
* License: GPL Version 2
*
* Copyright (c) 2004 All rights reserved.
* see below for aditional notes
*
* Last change:
********************************************************************/
/** This is the driver for Servo-To-Go Model I & II board.
The board includes 8 channels of quadrature encoder input,
8 channels of analog input and output, 32 bits digital I/O,
and an interval timer with interrupt.
Installation of the driver only realtime:
insmod hal_stg num_chan=8 dio="IIOO"
- autodetects the address
or
insmod hal_stg base=0x200 num_chan=8 dio="IIOO"
Check your Hardware manual for your base address.
The digital inputs/outputs configuration is determined by a
config string passed to insmod when loading the module.
The format consists by a four character string that sets the
direction of each group of pins. Each character of the direction
string is either "I" or "O". The first character sets the
direction of port A (Port A - DIO.0-7), the next sets
port B (Port B - DIO.8-15), the next sets port C (Port C - DIO.16-23),
and the fourth sets port D (Port D - DIO.24-31).
The following items are exported to the HAL.
Encoders:
Parameters:
float stg.<channel>.position-scale (counts per unit)
Pins:
s32 stg.<channel>.counts
float stg.<channel>.position
/todo bit stg.<channel>.index-enable
/todo bit stg.<channel>.enc-reset-count
Functions:
void stg.<channel>.capture_position
DACs:
Parameters:
float stg.<channel>.dac-offset
float stg.<channel>.dac-gain
Pins:
float stg.<channel>.dac-value
Functions:
void stg.<channel>.dac-write
ADC:
Parameters:
float stg.<channel>.adc-offset
float stg.<channel>.adc-gain
Pins:
float stg.<channel>.adc-value
Functions:
void stg.<channel>.adc-read
Digital In:
Pins:
bit stg.in-<pinnum>
bit stg.in-<pinnum>-not
Functions:
void stg.digital-in-read
Digital Out:
Parameters:
bit stg.out-<pinnum>-invert
Pins:
bit stg.out-<pinnum>
Functions:
void stg.digital-out-write
*/
/** Copyright (C) 2004 Alex Joni
<alex DOT joni AT robcon DOT ro>
*/
/** Copyright (C) 2003 John Kasunich
<jmkasunich AT users DOT sourceforge DOT net>
*/
/* Based on STGMEMBS.CPP from the Servo To Go Windows drivers
- Copyright (c) 1996 Servo To Go Inc and released under GPL Version 2 */
/* Also relates to the EMC1 code (very similar to STGMEMBS.CPP)
work done by Fred Proctor, Will Shackleford */
/** This program is free software; you can redistribute it and/or
modify it under the terms of version 2 of the GNU General
Public License as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111 USA
THE AUTHORS OF THIS LIBRARY ACCEPT ABSOLUTELY NO LIABILITY FOR
ANY HARM OR LOSS RESULTING FROM ITS USE. IT IS _EXTREMELY_ UNWISE
TO RELY ON SOFTWARE ALONE FOR SAFETY. Any machinery capable of
harming persons must have provisions for completely removing power
from all motors, etc, before persons enter any danger area. All
machinery must be designed to comply with local and national safety
codes, and the authors of this software can not, and do not, take
any responsibility for such compliance.
This code was written as part of the EMC HAL project. For more
information, go to www.linuxcnc.org.
*/
#include <asm/io.h>
#include "rtapi.h" /* RTAPI realtime OS API */
#include "rtapi_app.h" /* RTAPI realtime module decls */
#include "hal.h" /* HAL public API decls */
#include "hal_stg.h" /* STG related defines */
/* module information */
MODULE_AUTHOR("Alex Joni");
MODULE_DESCRIPTION("Driver for Servo-to-Go Model I & II for EMC HAL");
MODULE_LICENSE("GPL");
static int base = 0x00; /* board base address, 0 means autodetect */
RTAPI_MP_INT(base, "board base address, don't use for autodetect");
static int model = 0; /* board model, leave empty and autodetect */
RTAPI_MP_INT(model, "board model, use with caution. it overrides the detected model");
static int num_chan = MAX_CHANS; /* number of channels - default = 8 */
RTAPI_MP_INT(num_chan, "number of channels");
static char *dio = "IIOO"; /* dio config - default = port A&B inputs, port C&D outputs */
RTAPI_MP_STRING(dio, "dio config string - expects something like IIOO");
#define EPSILON 1e-20
/***********************************************************************
* STRUCTURES AND GLOBAL VARIABLES *
************************************************************************/
typedef struct {
hal_bit_t *data; /* basic pin for input or output */
union {
hal_bit_t *not; /* pin for inverted data (input only) */
hal_bit_t invert; /* param for inversion (output only) */
} io;
} io_pin;
typedef struct {
/* counter data */
hal_s32_t *count[MAX_CHANS]; /* captured binary count value */
hal_s32_t offset[MAX_CHANS]; /* offset to hold latched position from index pulse */
hal_float_t *pos[MAX_CHANS]; /* scaled position (floating point) */
hal_float_t pos_scale[MAX_CHANS]; /* parameter: scaling factor for pos */
hal_bit_t *index_enable[MAX_CHANS]; /* pins for index homing */
hal_bit_t *index_latch[MAX_CHANS]; /* value of the index latch for the axis */
// hal_s32_t check_index[MAX_CHANS]; /* internal marker for two stage index pulse check */
hal_bit_t *index_polarity[MAX_CHANS]; /* Polarity of index pulse */
/* dac data */
hal_float_t *dac_value[MAX_CHANS]; /* value to be written to dac */
hal_float_t dac_offset[MAX_CHANS]; /* offset value for DAC */
hal_float_t dac_gain[MAX_CHANS]; /* gain to be applied */
/* adc data */
hal_float_t *adc_value[MAX_CHANS]; /* value to be read from adc */
hal_float_t adc_offset[MAX_CHANS]; /* offset value for ADC */
hal_float_t adc_gain[MAX_CHANS]; /* gain to be applied */
int adc_current_chan; /* holds the currently converting channel */
/* dio data */
io_pin port[4][8]; /* holds 4 ports each 8 pins, either input or output */
unsigned char dir_bits; /* remembers config (which port is input which is output) */
unsigned char model;
} stg_struct;
static stg_struct *stg_driver;
/* other globals */
static int comp_id; /* component ID */
static int outpinnum=0, inputpinnum=0;
//const int STG_MSG_LEVEL = RTAPI_MSG_ALL;
const int STG_MSG_LEVEL = RTAPI_MSG_INFO;
#define DATA(x) (base + (2 * x) - (x % 2)) /* Address of Data register 0 */
#define CTRL(x) (base + (2 * (x+1)) - (x % 2)) /* Address of Control register 0 */
/***********************************************************************
* LOCAL FUNCTION DECLARATIONS *
************************************************************************/
/* helper functions, to export HAL pins & co. */
static int export_counter(int num, stg_struct * addr);
static int export_dac(int num, stg_struct * addr);
static int export_adc(int num, stg_struct * addr);
static int export_pins(int num, int dir, stg_struct * addr);
static int export_input_pin(int pinnum, io_pin * pin);
static int export_output_pin(int pinnum, io_pin * pin);
/* Board specific functions */
/* initializes the STG, takes care of autodetection, all initialisations */
static int stg_init_card(void);
/* sets up interrupt to be used */
static int stg_set_interrupt(short interrupt);
/* scans possible addresses for STG cards */
static unsigned short stg_autodetect(void);
/* counter related functions */
static int stg_counter_init(int ch);
static long stg_counter_read(int i);
static void stg_counter_latch(int i);
static void stg1_select_index_axis(void *arg, unsigned int chan);
static void stg1_reset_index_latch(void *arg, unsigned int chan);
static unsigned short stg1_get_index_pulse_latch(void *arg, unsigned int chan);
static void stg2_reset_all_index_latches( void *arg );
static void stg2_select_index_axes( void *arg, unsigned char mask );
static unsigned char stg2_get_all_index_pulse_latches( void *arg );
/* dac related functions */
static int stg_dac_init(int ch);
static int stg_dac_write(int ch, short value);
/* adc related functions */
static int stg_adc_init(int ch);
static int stg_adc_start(void *arg, unsigned short wAxis);
static short stg_adc_read(void *arg, int ch);
/* dio related functions */
static int stg_dio_init(void);
/* periodic functions registered to HAL */
static void stg_adcs_read(void *arg, long period); //reads adc data from the board, check long description at the beginning of the function
static void stg_dacs_write(void *arg, long period); //writes dac's to the STG
static void stg_counter_capture(void *arg, long period); //captures encoder counters
static void stg_di_read(void *arg, long period); //reads digital inputs from the STG
static void stg_do_write(void *arg, long period); //writes digital outputs to the STG
//static void stg_debug_print( void *, long );
/***********************************************************************
* INIT AND EXIT CODE *
************************************************************************/
#define MAX_CHAN 8
int rtapi_app_main(void)
{
int n, retval, mask, m;
unsigned char dir_bits;
int msg;
msg = rtapi_get_msg_level();
rtapi_set_msg_level( STG_MSG_LEVEL );
/* test for number of channels */
if ((num_chan <= 0) || (num_chan > MAX_CHAN)) {
rtapi_print_msg(RTAPI_MSG_ERR,
"STG: ERROR: invalid num_chan: %d\n", num_chan);
return -1;
}
/* test for config string */
if ((dio == 0) || (dio[0] == '\0')) {
rtapi_print_msg(RTAPI_MSG_ERR, "STG: ERROR: no dio config string\n");
return -1;
}
/* have good config info, connect to the HAL */
comp_id = hal_init("hal_stg");
if (comp_id < 0) {
rtapi_print_msg(RTAPI_MSG_ERR, "STG: ERROR: hal_init() failed\n");
return -1;
}
/* allocate shared memory for stg data */
stg_driver = hal_malloc(num_chan * sizeof(stg_struct));
if (stg_driver == 0) {
rtapi_print_msg(RTAPI_MSG_ERR, "STG: ERROR: hal_malloc() failed\n");
hal_exit(comp_id);
return -1;
}
/* takes care of all initialisations, also autodetection and model if necessary */
if ((retval=stg_init_card()) != 0) {
rtapi_print_msg(RTAPI_MSG_ERR,
"STG: ERROR: stg_init_card() failed\n");
hal_exit(comp_id);
return retval;
}
/* dio should be a string of 4 'I" or "O" characters */
dir_bits = 0;
mask = 0x01;
for ( m = 0 ; m < 4 ; m++ ) {
/* test character and set/clear bit */
if ((dio[m] == 'i') || (dio[m] == 'I')) {
/* input, set mask bit to zero */
dir_bits &= ~mask;
} else if ((dio[m] == 'o') || (dio[m] == 'O')) {
/* output, set mask bit to one */
dir_bits |= mask;
} else {
rtapi_print_msg(RTAPI_MSG_ERR,
"STG: ERROR: bad config info for port %d\n", m);
return -1;
}
/* shift mask for next bit */
mask <<= 1;
}
/* we now should have directions figured out, next is exporting the pins based on that */
mask = 0x01;
for ( m = 0 ; m < 4 ; m++ ) {
/* port, direction, driver */
export_pins(m, (dir_bits & mask), stg_driver);
/* shift mask for next bit */
mask <<= 1;
}
stg_driver->dir_bits = dir_bits; /* remember direction of each port, will be used in the write / read functions */
stg_dio_init();
/* export all the variables for each counter, dac */
for (n = 0; n < num_chan; n++) {
/* export all vars */
retval = export_counter(n, stg_driver);
if (retval != 0) {
rtapi_print_msg(RTAPI_MSG_ERR,
"STG: ERROR: counter %d var export failed\n", n + 1);
hal_exit(comp_id);
return -1;
}
/* init counter */
*(stg_driver->count[n]) = 0;
stg_driver->offset[n] = 0;
*(stg_driver->pos[n]) = 0.0;
/* By default the index pulse is not processed/used */
*(stg_driver->index_enable[n]) = 0;
/* Default polarity for the index pulse is active high */
if( stg_driver->model == 1 )
{
*(stg_driver->index_polarity[n]) = 1;
}
/* Default value for the index latch output is false */
*(stg_driver->index_latch[n]) = 0;
stg_driver->pos_scale[n] = 1.0;
/* init counter chip */
stg_counter_init(n);
retval = export_dac(n, stg_driver);
if (retval != 0) {
rtapi_print_msg(RTAPI_MSG_ERR,
"STG: ERROR: dac %d var export failed\n", n + 1);
hal_exit(comp_id);
return -1;
}
/* init counter */
*(stg_driver->dac_value[n]) = 0;
stg_driver->dac_offset[n] = 0.0;
stg_driver->dac_gain[n] = 1.0;
/* init dac chip */
stg_dac_init(n);
retval = export_adc(n, stg_driver);
if (retval != 0) {
rtapi_print_msg(RTAPI_MSG_ERR,
"STG: ERROR: adc %d var export failed\n", n + 1);
hal_exit(comp_id);
return -1;
}
/* init counter */
*(stg_driver->adc_value[n]) = 0;
stg_driver->adc_offset[n] = 0.0;
stg_driver->adc_gain[n] = 1.0;
stg_driver->adc_current_chan = -1; /* notify that no conversion has been started yet */
/* init adc chip */
stg_adc_init(n);
}
/* export functions */
retval = hal_export_funct("stg.capture-position", stg_counter_capture,
stg_driver, 1, 0, comp_id);
if (retval != 0) {
rtapi_print_msg(RTAPI_MSG_ERR,
"STG: ERROR: stg.counter-capture funct export failed\n");
hal_exit(comp_id);
return -1;
}
rtapi_print_msg(RTAPI_MSG_INFO,
"STG: installed %d encoder counters\n", num_chan);
retval = hal_export_funct("stg.write-dacs", stg_dacs_write,
stg_driver, 1, 0, comp_id);
if (retval != 0) {
rtapi_print_msg(RTAPI_MSG_ERR,
"STG: ERROR: stg.write-dacs funct export failed\n");
hal_exit(comp_id);
return -1;
}
rtapi_print_msg(RTAPI_MSG_INFO,
"STG: installed %d dacs\n", num_chan);
retval = hal_export_funct("stg.read-adcs", stg_adcs_read,
stg_driver, 1, 0, comp_id);
if (retval != 0) {
rtapi_print_msg(RTAPI_MSG_ERR,
"STG: ERROR: stg.read-adcs funct export failed\n");
hal_exit(comp_id);
return -1;
}
rtapi_print_msg(RTAPI_MSG_INFO,
"STG: installed %d adcs\n", num_chan);
retval = hal_export_funct("stg.di-read", stg_di_read,
stg_driver, 0, 0, comp_id);
if (retval != 0) {
rtapi_print_msg(RTAPI_MSG_ERR,
"STG: ERROR: stg.di-read funct export failed\n");
hal_exit(comp_id);
return -1;
}
rtapi_print_msg(RTAPI_MSG_INFO,
"STG: installed %d digital inputs\n", inputpinnum);
retval = hal_export_funct("stg.do-write", stg_do_write,
stg_driver, 0, 0, comp_id);
if (retval != 0) {
rtapi_print_msg(RTAPI_MSG_ERR,
"STG: ERROR: stg.do-write funct export failed\n");
hal_exit(comp_id);
return -1;
}
rtapi_print_msg(RTAPI_MSG_INFO,
"STG: installed %d digital outputs\n", outpinnum);
/*
retval = hal_export_funct("stg.debug_print", stg_debug_print, stg_driver, 0, 0, comp_id);
if (retval != 0)
{
rtapi_print_msg(RTAPI_MSG_ERR,
"STG: ERROR: stg.debug_print funct export failed\n");
hal_exit(comp_id);
return -1;
}
rtapi_print_msg(RTAPI_MSG_INFO,
"STG: installed periodic debug print\n");
*/
hal_ready(comp_id);
/* restore saved message level */
rtapi_set_msg_level(msg);
return 0;
}
void rtapi_app_exit(void)
{
hal_exit(comp_id);
// FIXME, check for return code ?
return;
}
/***********************************************************************
* REALTIME ENCODER COUNTING AND UPDATE FUNCTIONS *
************************************************************************/
static void stg_counter_capture(void *arg, long period)
{
stg_struct *stg = arg;
int n;
// int msg;
unsigned char mask;
unsigned char index_pulse_latches;
if( stg->model == 1 )
{
/*
* STG Model 1, stg1
*/
for( n = 0; n < num_chan; n++ )
{
/* reset and then select current axes pair to be reset by index
* Because they index polarity is configurable for the stg2 card be select
* even for the odd axes */
stg1_select_index_axis(arg, n);
if (stg1_get_index_pulse_latch(arg, n))
{
*(stg->index_latch[n]) = 1;
if ( *(stg->index_enable[n]) == 1 )
{
// read the value without latching, latching was done on index
// remember this as an offset, it will be substracted from nominal
stg->offset[n] = stg_counter_read(n);
/* set index-enable false, so outside knows we found the index, and reset the position */
*(stg->index_enable[n]) = 0;
/*
msg = rtapi_get_msg_level();
rtapi_set_msg_level( STG_MSG_LEVEL );
rtapi_print_msg(RTAPI_MSG_DBG, "STG: Index pulse detected on channel %1d\n", n );
rtapi_set_msg_level(msg);
*/
} else {
/* NOP, no action needed, since the selection of an index pair is just valid until the next
* pair is selected */
}
} else {
*(stg->index_latch[n]) = 0;
}
}
} else if( stg->model == 2 )
{
/*
* STG Model 2, stg2
*/
// Set IDLEN
for( mask = 0, n = 0; n < num_chan; n++ )
{
if( *(stg->index_enable[n]) == 1 )
{
mask |= ( 1<<n );
}
}
stg2_select_index_axes( arg, mask );
// Read all latches
index_pulse_latches = stg2_get_all_index_pulse_latches( arg );
// set or reset index_latch
// index-enable reset if needed
for( n = 0; n < num_chan; n++ )
{
if( index_pulse_latches & (1<<n) )
{
*(stg->index_latch[n]) = 1;
if ( *(stg->index_enable[n]) == 1 )
{
// read the value without latching, latching was done on index
// remember this as an offset, it will be substracted from nominal
stg->offset[n] = stg_counter_read(n);
/* set index-enable false, so outside knows we found the index, and reset the position */
*(stg->index_enable[n]) = 0;
/*
msg = rtapi_get_msg_level();
rtapi_set_msg_level( STG_MSG_LEVEL );
rtapi_print_msg(RTAPI_MSG_DBG, "STG: Index pulse detected on channel %1d\n", n );
rtapi_set_msg_level(msg);
*/
} else {
/* NOP, no action needed, since all index latches will be clearer for the next iteration anyway */
}
} else {
*(stg->index_latch[n]) = 0;
}
}
// Reset all latches
stg2_reset_all_index_latches( arg );
} else {
// NOP, only models stg1 and stg2, thus should never be reached */
}
for (n = 0; n < num_chan; n++)
{
/* capture raw counts to latches */
stg_counter_latch(n);
/* read raw count, and substract the offset (determined by indexed homing) */
*(stg->count[n]) = stg_counter_read(n) - stg->offset[n];
/* make sure scale isn't zero or tiny to avoid divide error */
if (stg->pos_scale[n] < 0.0) {
if (stg->pos_scale[n] > -EPSILON)
stg->pos_scale[n] = -1.0;
} else {
if (stg->pos_scale[n] < EPSILON)
stg->pos_scale[n] = 1.0;
}
/* scale count to make floating point position */
*(stg->pos[n]) = *(stg->count[n]) / stg->pos_scale[n];
}
/* done */
return;
}
/* stg_debug_print
* run this function from a very slow,
* e.g. 1sec thread and it will give some information
*/
/*
static void stg_debug_print( void *arg, long period )
{
stg_struct *stg=arg;
int msg;
static int counter;
// model 2 encoder index registers
unsigned char idlen_reg;
unsigned char seldi_reg;
//model 1 encoder index registers
unsigned char intc_reg;
msg = rtapi_get_msg_level();
rtapi_set_msg_level( STG_MSG_LEVEL );
if( stg->model == 1 )
{
intc_reg = inb(base + INTC);
rtapi_print_msg(RTAPI_MSG_DBG, "STG: %04d: IXS1 is %s\n", counter, ( intc_reg & IXS1 ) ? "TRUE" : "FALSE" );
rtapi_print_msg(RTAPI_MSG_DBG, "STG: %04d: IXS0 is %s\n", counter, ( intc_reg & IXS0 ) ? "TRUE" : "FALSE" );
rtapi_print_msg(RTAPI_MSG_DBG, "STG: %04d: IXLVL is active %s\n", counter, ( intc_reg & IXLVL ) ? "TRUE" : "FALSE" );
} else if (stg->model == 2 )
{
idlen_reg = inb( base + IDLEN );
seldi_reg = inb( base + SELDI );
rtapi_print_msg(RTAPI_MSG_DBG, "STG: %04d: IDLEN is 0x%02x\n", counter, idlen_reg );
rtapi_print_msg(RTAPI_MSG_DBG, "STG: %04d: SELDI is 0x%02x\n", counter, seldi_reg );
} else {
// NOP, should never be reached
}
// restore saved message level
rtapi_set_msg_level(msg);
counter++;
return;
}
*/
/* stg_dacs_write() - writes all dac's to the board
- calls stg_dac_write() */
static void stg_dacs_write(void *arg, long period)
{
stg_struct *stg;
double volts;
short ncounts, i;
stg=arg;
for (i=0;i < num_chan; i++) {
/* scale the voltage to be written based on offset and gain */
volts = (*(stg->dac_value[i]) - stg->dac_offset[i]) * stg->dac_gain[i];
/* clamp the scaled voltage value to the -10V to 10V output range of the STG */
if (volts < -10.0)
volts = -10.0;
if (volts > 10.0)
volts = 10.0;
/* compute the value for the DAC, the extra - in there is STG specific */
ncounts = (short) ((((-10.0 - volts) * 0x1FFF) / 20.0) - 1 );
/* write it to the card */
stg_dac_write(i, ncounts);
}
return;
}
/* stg_adcs_read() - reads one adc at a time from the board to hal
- calls stg_adc_read() */
/* long description :
Because the conversion takes a while (first mux to the right channel ~5usecs,
then start the conversion, and wait for it to finish ~16-20 usecs) for all the
8 channels, it would be too much to start the conversion, wait for the result
for all the 8 axes.
Instead a different approach is chosen:
- on the beginning of the function the conversion should already be done
- it gets read and sent to HAL
- the new channel gets mux'ed
- and at the end of the function the new conversion is started, so that the data
will be available at the next run.
This way 8 periods are needed to read 8 ADC's. It is possible to set the board
to do faster conversions (AZ bit on INTC off), but that would make it less
reliable (autozero takes care of temp. errors).*/
/*! \todo STG_ADC_Improvement (if any user requests it).
Another improvement might be to let the user chose what channels he would like
for ADC (having only 2 channels might speed things up considerably).
*/
static void stg_adcs_read(void *arg, long period)
{
stg_struct *stg;
double volts;
short ncounts;
int i;
stg = arg;
i = stg->adc_current_chan;
if ((i >= 0) && (i < num_chan)) {
/* we should have the conversion done for adc_num_chan */
ncounts = stg_adc_read(stg,i);
volts = ncounts * 10.0 / 4096;
*(stg->adc_value[i]) = volts * stg->adc_gain[i] - stg->adc_offset[i];
}
/* if adc_num_chan < 0, it's the first time this routine runs
thus we don't have any ready data, we simply start the next conversion */
if (stg->adc_current_chan++ >= num_chan)
stg->adc_current_chan=0; //increase the channel, and roll back to 0 after all chans are done
/* select the current channel with the mux, and start the conversion */
stg_adc_start(stg,stg->adc_current_chan);
/* the next time this function runs, the result should be available */
return;
}
// helper function to extract the data out of a char and place it into HAL data
// written by JMK
static void split_input(unsigned char data, io_pin *dest, int num)
{
int b;
unsigned char mask;
/* splits a byte into 'num' HAL pins (and their NOTs) */
mask = 0x01;
for (b = 0 ; b < num ; b++ ) {
if ( data & mask ) {
/* input high, which means FALSE (active low) */
*(dest->data) = 0;
*(dest->io.not) = 1;
} else {
/* input low, which means TRUE */
*(dest->data) = 1;
*(dest->io.not) = 0;
}
mask <<= 1;
dest++;
}
return;
}
// helper function to extract the data out of HAL and place it into a char
// written by JMK
unsigned char build_output(io_pin *src, int num)
{
int b;
unsigned char data, mask;
data = 0x00;
mask = 0x01;
/* assemble output byte for data port from 'num' source variables */
for (b = 0; b < num; b++) {
/* get the data, add to output byte */
if ( *(src->data) ) {
if ( !(src->io.invert) ) {
data |= mask;
}
} else {
if ( (src->io.invert) ) {
data |= mask;
}
}
mask <<= 1;
src++;
}
return data;
}
static void stg_di_read(void *arg, long period) //reads digital inputs from the STG
{
stg_struct *stg;
unsigned char val;
stg=arg;
if ( (stg->dir_bits & 0x01) == 0) { // if port A is set as input, read the bits
if (stg->model == 1)
val = inb(base + DIO_A);
else
val = inb(base + PORT_A);
split_input(val, &(stg->port[0][0]), 8);
}
if ( (stg->dir_bits & 0x02) == 0) { // if port B is set as input, read the bits
if (stg->model == 1)
val = inb(base + DIO_B);
else
val = inb(base + PORT_B);
split_input(val, &(stg->port[1][0]), 8);
}
if ( (stg->dir_bits & 0x04) == 0) { // if port C is set as input, read the bits
if (stg->model == 1)
val = inb(base + DIO_C);
else
val = inb(base + PORT_C);
split_input(val, &(stg->port[2][0]), 8);
}
if ( (stg->dir_bits & 0x08) == 0) { // if port D is set as input, read the bits
if (stg->model == 1)
val = inb(base + DIO_D);
else
val = inb(base + PORT_D);
split_input(val, &(stg->port[3][0]), 8);
}
}
static void stg_do_write(void *arg, long period) //writes digital outputs to the STG
{
stg_struct *stg;
unsigned char val;
stg=arg;
if ( (stg->dir_bits & 0x01) != 0) { // if port A is set as output, write the bits
val = build_output(&(stg->port[0][0]), 8);
if (stg->model == 1)
outb(val, base + DIO_A);
else
outb(val, base + PORT_A);
}
if ( (stg->dir_bits & 0x02) != 0) { // if port B is set as output, write the bits
val = build_output(&(stg->port[1][0]), 8);
if (stg->model == 1)
outb(val, base + DIO_B);
else
outb(val, base + PORT_B);
}
if ( (stg->dir_bits & 0x04) != 0) { // if port C is set as output, write the bits
val = build_output(&(stg->port[2][0]), 8);
if (stg->model == 1)
outb(val, base + DIO_C);
else
outb(val, base + PORT_C);
}
if ( (stg->dir_bits & 0x08) != 0) { // if port D is set as output, write the bits
val = build_output(&(stg->port[3][0]), 8);
if (stg->model == 1)
outb(val, base + DIO_D);
else
outb(val, base + PORT_D);
}
}
/***********************************************************************
* BOARD SPECIFIC FUNCTIONS *
* execute board related things (write/read to/from the stg) *
************************************************************************/
/***********************************************************************
* INIT FUNCTIONS *
************************************************************************/
/*
stg_counter_init() - Initializes the channel
works the same for both cards (STG & STG2)
*/
static int stg_counter_init(int ch)
{
/* Set Counter Command Register - Master Control, Master Reset (MRST), */
/* and Reset address pointer (RADR). */
outb(0x23, CTRL(ch));
/* Set Counter Command Register - Input Control, OL Load (P3), */
/* and Enable Inputs A and B (INA/B). */
outb(0x68, CTRL(ch));
/* Set Counter Command Register - Output Control */
outb(0x80, CTRL(ch));
/* Set Counter Command Register - Quadrature */
outb(0xC3, CTRL(ch));
return 0;
}
/*
stg_dac_init() - Initializes the dac channel
works the same for both cards (STG & STG2)
*/
static int stg_dac_init(int ch)
{
int i;
/* set all DAC's to 0 on startup */
for (i=0; i < num_chan; i++) {
stg_dac_write(i, 0x1000); //by Xuecheng, 0x1000 coresponds to 0V
}
return 0;
}
/*
stg_adc_init() - Initializes the adc channel
*/
static int stg_adc_init(int ch)
{
/* not much to setup for the ADC's */
/* only select the mode of operation we will work with AutoZero */
if (stg_driver->model == 1)
outb(0x0f, base + MIO_2); // the second 82C55 is already configured (by running stg_dio_init)
// we only set bit 8 (AZ) to 1 to enable it
return 0;
}
/*
stg_dio_init() - Initializes the dio's
*/
static int stg_dio_init(void)
{
/* we will select the directions of each port */
unsigned char control, tempINTC, tempIMR, tempCtrl0, tempCtrl1;
control = 0x80; //set up |1|0|0|A|CH|0|B|CL|
if ( (stg_driver->dir_bits & 0x01) == 0) // if port A is set as input, set bit accordingly
control |= 0x10;
if ( (stg_driver->dir_bits & 0x02) == 0) // if port B is set as input, set bit accordingly
control |= 0x02;
if ( (stg_driver->dir_bits & 0x04) == 0) // if port C is set as input, set bits accordingly
control |= 0x09;
if (stg_driver->model == 1) {
// write the computed control to MIO_1
outb(control, base+MIO_1);
} else { //model STG2
// write port A,B,C direction to ABC_DIR
outb(control, base+ABC_DIR);
}
tempINTC = inb(base + INTC);
if (stg_driver->model == 1) {
// next compute the directions for port D, located on the second 82C55
control = 0x82;
if ( (stg_driver->dir_bits & 0x08) == 0)// if port D is set as input, set bits accordingly
control = 0x92;
tempIMR = inb(base + IMR); // get the current interrupt mask
outb(0xff, base + OCW1); //mask off all interrupts
// write the computed control to MIO_2
outb(control, base+MIO_2);
outb(tempINTC, base + INTC); //restore interrupt control reg.
outb(tempIMR, base+ OCW1); //restore int mask
} else { //model STG2
// save contents of CNTRL0, it will get reinitialized
tempCtrl0 = inb(base+CNTRL0);
tempCtrl1 = inb(base+CNTRL1);
// CNTRL0 output, BRDTST input, D output
control = 0x82;
if ( (stg_driver->dir_bits & 0x08) == 0)// if port D is set as input, set bits accordingly
control = 0x8b;
outb(0xff, base + CNTRL1); // disable interrupts
outb(control, base + D_DIR); // set port D direction, also resets CNTRL0
outb(tempCtrl0, base + CNTRL0);
outb( (tempCtrl1 & 0x0f) | 0xf0, base + CNTRL1);
}
return 0;
}
/***********************************************************************
* ACTION FUNCTIONS *
* these do the actual data exchange with the board *
************************************************************************/
static void stg_counter_latch(int i)
{
outb(0x03, CTRL(i));
}
/*
stg_counter_read() - reads one channel
FIXME - todo, extend to 32 bits in software
works the same for both cards (STG & STG2)
*/
static long stg_counter_read(int i)
{
union pos_tag {
long l;
struct byte_tag {
char b0;
char b1;
char b2;
char b3;
} byte;
} pos;
pos.byte.b0 = inb(DATA(i));
pos.byte.b1 = inb(DATA(i));
pos.byte.b2 = inb(DATA(i));
if (pos.byte.b2 < 0) {
pos.byte.b3 = -1;
} else {
pos.byte.b3 = 0;
}
return pos.l;
}
static void stg1_select_index_axis(void *arg, unsigned int channel)
{
stg_struct *stg = arg;
unsigned char byIntc,byAxis;
unsigned char byPol = 1;
if (stg->model == 1)
{
/*
* Set polarity to low active if that is requested
*/
if( *(stg->index_polarity[channel]) == 0 )
{
byPol = 0;
}
/* Stg manual p. 21: "The bits are level triggered and cannot be reset if they are active"
* So it is save to reset them and only those which are really active will remain */
stg1_reset_index_latch(arg, channel);
// routine for Model 1
// initialize stuff to poll index pulse
byAxis = channel;
byAxis &= 0x6; // ignore low bit, we check 2 axes at a time
byAxis <<= 3; // shift into position for IXS1, IXS0
byIntc = inb(base + INTC); // get a copy of INTC, we'll change
// some bits in it, not all
byIntc &= ~(IXLVL | IXS1 | IXS0); // zero bits for axis and polarity
byIntc |= byAxis; // put axes address in INTC
if (byPol != 0) // is index pulse active high?
byIntc |= IXLVL;
outb(byIntc, base + INTC);
}
}
static void stg2_select_index_axes( void *arg, unsigned char mask )
{
/* stg2 manual, p.21
* writing 0 to the corresponding bit disables the index pulse
* writing 1 enables it
*/
outb( mask, base + IDLEN );
return;
}
/* Note that for stg1 cards this function will clear the index pulse latches for the two selected axes,
*/
static void stg1_reset_index_latch(void *arg, unsigned int channel)
{
stg_struct *stg = arg;
if (stg->model == 1)
{ // routine for Model 1
inb(base + ODDRST); //reset index pulse latch for ODD axis
inb(base + BRDTST); //reset index pulse latch for EVEN axis
}
return;
}
static void stg2_reset_all_index_latches( void *arg )
{
stg_struct *stg = arg;
if( stg->model == 2 )
{
/*
* stg2 manual p.22,
* writing 0 to IDL resets the index latch,
* writing 1 has no effect
*/
outb( 0x00, base + IDL);
}
return;
}
unsigned char stg1_get_current_IRR(void)
{
outb(base + OCW3, 0x0a); // IRR on next read
return inb(base + IRR);
}
static unsigned short stg1_get_index_pulse_latch(void *arg, unsigned int chan)
{
// routine for Model 1 board
stg_struct *stg = arg;
unsigned char byIRR, byAxisMask;
if (stg->model == 1){ // routine for Model 1
byIRR = stg1_get_current_IRR();
byAxisMask = (chan & 1) ? LIXODD : LIXEVN; // even or odd axis?
if (byIRR & byAxisMask) // check latched index pulse
return 1;
return 0;
} else if (stg->model == 2) {
//FIXME: return if latched index pulse is there
return 0;
}
return 0;
}
static unsigned char stg2_get_all_index_pulse_latches( void *arg )
{
stg_struct *stg = arg;
unsigned char indexRegister = 0;
if( stg-> model == 2 )
indexRegister = inb( base + IDL );
return indexRegister;
}
/*
stg_dac_write() - writes a dac channel
works the same for both cards (STG & STG2)
*/
static int stg_dac_write(int ch, short value)
{
/* write the DAC */
outw(value, base + DAC_0 + (ch << 1));
return 0;
}
int stg_adc_start(void *arg, unsigned short wAxis)
{
stg_struct *stg;
unsigned char tempCtrl0;
stg = arg;
if (stg->model == 1) {
/* do a dummy read from the ADC, just to set the input multiplexer to
the right channel */
inw(base + ADC_0 + (wAxis << 1));
/* wait 4 uS for settling time on the multiplexer and ADC. You probably
shouldn't really have a delay in a driver */
outb(0, 0x80);
outb(0, 0x80);
outb(0, 0x80);
outb(0, 0x80);
/* now start conversion */
outw(0, base + ADC_0 + (wAxis << 1));
} else { //model STG2
tempCtrl0 = inb(base+CNTRL0) & 0x07; // save IRQ
tempCtrl0 |= (wAxis << 4) | 0x88; //autozero & cal cycle
outb(tempCtrl0, base + CNTRL0); // select channel
/* wait 4 uS for settling time on the multiplexer and ADC. You probably
shouldn't really have a delay in a driver */
outb(0, 0x80);
outb(0, 0x80);
outb(0, 0x80);
outb(0, 0x80);
/* now start conversion */
outw(0, base + ADC_0);
}
return 0;
};
static short stg_adc_read(void *arg, int axis)
{
short j;
stg_struct *stg;
stg = arg;
/*
there must have been a delay between stg_adc_start() and
stg_adc_read(), of 19 usec if autozeroing (we are), 4 usecs
otherwise. In code that calls this, make sure you split these
calls up with some intervening code
*/
if (stg->model == 1) {
/* make sure conversion is done, assume polling delay is done.
EOC (End Of Conversion) is bit 0x08 in IIR (Interrupt Request
Register) of Interrupt Controller. Don't wait forever though
bail out eventually. */
for (j = 0; !(inb(base + IRR) & 0x08) && (j < 1000); j++);
j = inw(base + ADC_0 + (axis << 1));
} else { //model 2
for (j = 0; (inb(base + BRDTST) & 0x08) && (j < 1000); j++);
j = inw(base + ADC_0 + (axis << 1));
}
if (j & 0x1000) /* is sign bit negative? */
j |= 0xf000; /* sign extend */
else
j &= 0xfff; /* make sure high order bits are zero. */
return j;
};
/***********************************************************************
* BOARD INIT FUNCTIONS *
* functions for autodetec, irq init *
************************************************************************/
static int stg_set_interrupt(short interrupt)
{
unsigned char tempINTC;
if (stg_driver->model == 1)
tempINTC=0x80;
else
tempINTC=0x88;//also CAL low, don|t want ADC to calibrate
switch (interrupt) {
case 3: break;
case 5: tempINTC |= 4;break;
case 7: tempINTC |= 2;break;
case 9: tempINTC |= 6;break;
case 10: tempINTC |= 5;break;
case 11: tempINTC |= 7;break;
case 12: tempINTC |= 3;break;
case 15: tempINTC |= 1;break;
default: tempINTC |= 4;break;
}
if (stg_driver->model == 1)
outb(tempINTC, base + INTC);
else
outb(tempINTC, base + CNTRL0);
return 0;
}
static int stg_init_card()
{
int msg;
msg = rtapi_get_msg_level();
rtapi_set_msg_level( STG_MSG_LEVEL );
/*
* If both stg card model and base address are set
* then no autodetecting is necessary.
* Else we need to autodetect
*/
if ( (model != 0) && (base != 0) )
{
stg_driver->model = model;
} else {
base = stg_autodetect();
}
/*
* Now check if the settings for a card a ok
*/
if ( (base == 0x00) || (stg_driver->model == 0) )
{
rtapi_print_msg(RTAPI_MSG_ERR, "STG: ERROR: no stg1 or stg2 card could be initialised\n");
return -ENODEV;
}
if (stg_driver->model == 1) {
/*
* STG1
*/
// initialize INTC as output
outb(0x92, base + MIO_2);
stg_set_interrupt(5); // initialize it to smthg, we won't use it anyways
outb(0x1a, base + ICW1); // initialize the 82C59 as single chip (STG docs say so:)
outb(0x00, base + ICW2); // ICW2 not used, must init it to 0
outb(0xff, base + OCW1); // mask off all interrupts
rtapi_print_msg(RTAPI_MSG_INFO,
"STG: Initialised stg%1d card at address %x\n", stg_driver->model, base);
} else if (stg_driver->model == 2 ) {
/*
* STG2
*/
outb(0x8b, base + D_DIR); // initialize CONTRL0 output, BRDTST input
/* stg2 manual, p.21
* writing 0 to the corresponding bit disables the index pulse
* writing 1 enables it
*/
outb( 0x00, base + IDLEN );
/* stg2 manual, p.21
* writing 0 to the corresponding bit selects the index pulse to latch the counter
* writing 1 to the corresponding bit selects EXLATCH to latch the counter
*/
outb( 0x00, base + SELDI );
stg_set_interrupt(5); // initialize it to something, we won't use it anyways
rtapi_print_msg(RTAPI_MSG_INFO,
"STG: Initialised stg%1d card at address %x\n", stg_driver->model, base);
} else {
rtapi_print_msg(RTAPI_MSG_ERR, "STG: ERROR: The model stg%1d is not correct\n", stg_driver->model );
return -ENODEV;
}
/* restore saved message level */
rtapi_set_msg_level(msg);
// all ok
return 0;
}
/* scans possible addresses for STG cards */
unsigned short stg_autodetect()
{
short i, j, k, ofs;
unsigned short address;
unsigned short retval = 0;
int msg;
msg = rtapi_get_msg_level();
rtapi_set_msg_level( STG_MSG_LEVEL );
/* search all possible addresses */
for (i = 15; i >= 0; i--) {
address = i * 0x20 + 0x200;
/* does jumper = i? */
//if ((inb(address + BRDTST) & 0x0f) == i) { // by Xuecheng, not necessary
k = 0; // var for getting the serial
for (j = 0; j < 8; j++) {
ofs = (inb(address + BRDTST) >> 4);
if (ofs & 8) { /* is SER set? */
ofs = ofs & 7; /* mask for Q2,Q1,Q0 */
k += (1 << ofs); /* shift bit into position specified
by Q2, Q1, Q0 */
}
}
if (k == 0x75) {
rtapi_print_msg(RTAPI_MSG_INFO,
"STG: Autodetected stg1 card at address %x\n", address);
stg_driver->model=1;
retval = address; /* SER sequence is 01110101 */
break;
}
if (k == 0x74) {
rtapi_print_msg(RTAPI_MSG_INFO,
"STG: Autodetected stg2 card at address %x\n", address);
stg_driver->model=2;
retval = address;
break;
}
//}
}
if ( ( retval == 0 ) || ( stg_driver->model == 0 ) )
{
rtapi_print_msg(RTAPI_MSG_ERR,
"STG: stg_autodetect() did not find any stg1 or stg2 card\n");
}
/* restore saved message level */
rtapi_set_msg_level(msg);
return retval;
}
/***********************************************************************
* LOCAL FUNCTION DEFINITIONS *
* these are functions used for exporting various HAL pins/prams *
************************************************************************/
static int export_counter(int num, stg_struct *addr)
{
int retval, msg;
/* This function exports a lot of stuff, which results in a lot of
logging if msg_level is at INFO or ALL. So we save the current value
of msg_level and restore it later. If you actually need to log this
function's actions, change the second line below */
msg = rtapi_get_msg_level();
rtapi_set_msg_level( STG_MSG_LEVEL );
/* export pin for counts captured by update() */
retval = hal_pin_s32_newf(HAL_OUT, &addr->count[num],
comp_id, "stg.%d.counts", num);
if (retval != 0) {
return retval;
}
/* export pin for scaled position captured by update() */
retval = hal_pin_float_newf(HAL_OUT, &addr->pos[num],
comp_id, "stg.%d.position", num);
if (retval != 0) {
return retval;
}
/* export parameter for scaling */
retval = hal_param_float_newf(HAL_RW, &addr->pos_scale[num],
comp_id, "stg.%d.position-scale", num);
if (retval != 0) {
return retval;
}
/* export pin for index homing */
retval = hal_pin_bit_newf(HAL_IO, &addr->index_enable[num],
comp_id, "stg.%d.index-enable", num);
if (retval != 0) {
return retval;
}
/* export pin for reading the index latch */
retval = hal_pin_bit_newf(HAL_OUT, &addr->index_latch[num],
comp_id, "stg.%d.index-latch", num);
if (retval != 0) {
return retval;
}
/*
* The index polarity is configurable for the stg1 cards only,
* but not for the stg2 cards
*/
if( addr->model == 1 )
{
/* export read only HAL pin for index pulse polarity */
retval = hal_pin_bit_newf(HAL_IN, &addr->index_polarity[num],
comp_id, "stg.%d.index-polarity", num);
if (retval != 0)
{
return retval;
}
}
/* restore saved message level */
rtapi_set_msg_level(msg);
return 0;
}
static int export_dac(int num, stg_struct *addr)
{
int retval, msg;
/* This function exports a lot of stuff, which results in a lot of
logging if msg_level is at INFO or ALL. So we save the current value
of msg_level and restore it later. If you actually need to log this
function's actions, change the second line below */
msg = rtapi_get_msg_level();
rtapi_set_msg_level( STG_MSG_LEVEL );
/* export pin for voltage received by the board() */
retval = hal_pin_float_newf(HAL_IN, &addr->dac_value[num],
comp_id, "stg.%d.dac-value", num);
if (retval != 0) {
return retval;
}
/* export parameter for offset */
retval = hal_param_float_newf(HAL_RW, &addr->dac_offset[num],
comp_id, "stg.%d.dac-offset", num);
if (retval != 0) {
return retval;
}
/* export parameter for gain */
retval = hal_param_float_newf(HAL_RW, &addr->dac_gain[num],
comp_id, "stg.%d.dac-gain", num);
if (retval != 0) {
return retval;
}
/* restore saved message level */
rtapi_set_msg_level(msg);
return 0;
}
static int export_adc(int num, stg_struct *addr)
{
int retval, msg;
/* This function exports a lot of stuff, which results in a lot of
logging if msg_level is at INFO or ALL. So we save the current value
of msg_level and restore it later. If you actually need to log this
function's actions, change the second line below */
msg = rtapi_get_msg_level();
rtapi_set_msg_level( STG_MSG_LEVEL );
/* export pin for voltage received by the board() */
retval = hal_pin_float_newf(HAL_OUT, &addr->adc_value[num],
comp_id, "stg.%d.adc-value", num);
if (retval != 0) {
return retval;
}
/* export parameter for offset */
retval = hal_param_float_newf(HAL_RW, &addr->adc_offset[num],
comp_id, "stg.%d.adc-offset", num);
if (retval != 0) {
return retval;
}
/* export parameter for gain */
retval = hal_param_float_newf(HAL_RW, &addr->adc_gain[num],
comp_id, "stg.%d.adc-gain", num);
if (retval != 0) {
return retval;
}
/* restore saved message level */
rtapi_set_msg_level(msg);
return 0;
}
static int export_pins(int num, int dir, stg_struct *addr)
{
int retval, msg, i;
/* This function exports a lot of stuff, which results in a lot of
logging if msg_level is at INFO or ALL. So we save the current value
of msg_level and restore it later. If you actually need to log this
function's actions, change the second line below */
msg = rtapi_get_msg_level();
rtapi_set_msg_level( STG_MSG_LEVEL );
for (i=0; i<8; i++) {
if (dir != 0)
retval=export_output_pin(outpinnum++, &(addr->port[num][i]) );
else
retval=export_input_pin(inputpinnum++, &(addr->port[num][i]) );
if (retval != 0) {
return retval;
}
}
/* restore saved message level */
rtapi_set_msg_level(msg);
return 0;
}
static int export_input_pin(int pinnum, io_pin * pin)
{
int retval;
int msg;
/* This function exports a lot of stuff, which results in a lot of
logging if msg_level is at INFO or ALL. So we save the current value
of msg_level and restore it later. If you actually need to log this
function's actions, change the second line below */
msg = rtapi_get_msg_level();
rtapi_set_msg_level( STG_MSG_LEVEL );
/* export read only HAL pin for input data */
retval = hal_pin_bit_newf(HAL_OUT, &(pin->data), comp_id,
"stg.in-%02d", pinnum);
if (retval != 0) {
return retval;
}
/* export additional pin for inverted input data */
retval = hal_pin_bit_newf(HAL_OUT, &(pin->io.not), comp_id,
"stg.in-%02d-not", pinnum);
/* initialize HAL pins */
*(pin->data) = 0;
*(pin->io.not) = 1;
/* restore saved message level */
rtapi_set_msg_level(msg);
return retval;
}
static int export_output_pin(int pinnum, io_pin * pin)
{
int retval;
int msg;
/*
* This function exports a lot of stuff, which results in a lot of
* logging if msg_level is at INFO or ALL. So we save the current value
* of msg_level and restore it later. If you actually need to log this
* function's actions, change the second line below
*/
msg = rtapi_get_msg_level();
rtapi_set_msg_level( STG_MSG_LEVEL );
/* export read only HAL pin for output data */
retval = hal_pin_bit_newf(HAL_IN, &(pin->data),
comp_id, "stg.out-%02d", pinnum);
if (retval != 0) {
return retval;
}
/* export parameter for polarity */
retval = hal_param_bit_newf(HAL_RW, &(pin->io.invert),
comp_id, "stg.out-%02d-invert", pinnum);
/* initialize HAL pin and param */
*(pin->data) = 0;
pin->io.invert = 0;
/* restore saved message level */
rtapi_set_msg_level(msg);
return retval;
}
|