1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
|
# This is a component of emc2
# Copyright 2007 Jeff Epler <jepler@unpythonic.net>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
import sys, math
def dist_lseg(l1, l2, p):
"Compute the 3D distance from the line segment l1..l2 to the point p."
x0, y0, z0 = l1
xa, ya, za = l2
xi, yi, zi = p
dx = xa-x0
dy = ya-y0
dz = za-z0
d2 = dx*dx + dy*dy + dz*dz
if d2 == 0: return 0
t = (dx * (xi-x0) + dy * (yi-y0) + dz * (zi-z0)) / d2
if t < 0: t = 0
if t > 1: t = 1
dist2 = (xi - x0 - t*dx)**2 + (yi - y0 - t*dy)**2 + (zi - z0 - t*dz)**2
return dist2 ** .5
def rad1(x1,y1,x2,y2,x3,y3):
x12 = x1-x2
y12 = y1-y2
x23 = x2-x3
y23 = y2-y3
x31 = x3-x1
y31 = y3-y1
den = abs(x12 * y23 - x23 * y12)
if abs(den) < 1e-5: return sys.maxint
#print "rad1", x1, y1, x2, y2, x3, y3
math.hypot(x12, y12) * math.hypot(x23, y23) * math.hypot(x31, y31) / 2 / den
return math.hypot(x12, y12) * math.hypot(x23, y23) * math.hypot(x31, y31) / 2 / den
class Point:
def __init__(self, x, y):
self.x = x
self.y = y
def __str__(self): return "<%f,%f>" % (self.x, self.y)
def __sub__(self, other):
return Point(self.x - other.x, self.y - other.y)
def __add__(self, other):
return Point(self.x + other.x, self.y + other.y)
def __mul__(self, other):
return Point(self.x * other, self.y * other)
__rmul__ = __mul__
def cross(self, other):
return self.x * other.y - self.y * other.x
def dot(self, other):
return self.x * other.x + self.y * other.y
def mag(self):
return hypot(self.x, self.y)
def mag2(self):
return self.x**2 + self.y**2
def cent1(x1,y1,x2,y2,x3,y3):
P1 = Point(x1,y1)
P2 = Point(x2,y2)
P3 = Point(x3,y3)
den = abs((P1-P2).cross(P2-P3))
if abs(den) < 1e-5: return sys.maxint, sys.maxint
alpha = (P2-P3).mag2() * (P1-P2).dot(P1-P3) / 2 / den / den
beta = (P1-P3).mag2() * (P2-P1).dot(P2-P3) / 2 / den / den
gamma = (P1-P2).mag2() * (P3-P1).dot(P3-P2) / 2 / den / den
Pc = alpha * P1 + beta * P2 + gamma * P3
#print >>sys.stderr, "cent1", P1, P2, P3, Pc
#print >>sys.stderr, "\t", alpha, beta, gamma
return Pc.x, Pc.y
def arc_center(plane, p1, p2, p3):
x1, y1, z1 = p1
x2, y2, z2 = p2
x3, y3, z3 = p3
if plane == 17: return cent1(x1,y1,x2,y2,x3,y3)
if plane == 18: return cent1(x1,z1,x2,z2,x3,z3)
if plane == 19: return cent1(y1,z1,y2,z2,y3,z3)
def arc_rad(plane, P1, P2, P3):
if plane is None: return sys.maxint
x1, y1, z1 = P1
x2, y2, z2 = P2
x3, y3, z3 = P3
if plane == 17: return rad1(x1,y1,x2,y2,x3,y3)
if plane == 18: return rad1(x1,z1,x2,z2,x3,z3)
if plane == 19: return rad1(y1,z1,y2,z2,y3,z3)
return None, 0
def get_pts(plane, (x,y,z)):
if plane == 17: return x,y
if plane == 18: return x,z
if plane == 19: return y,z
def one_quadrant(plane, c, p1, p2, p3):
xc, yc = c
x1, y1 = get_pts(plane, p1)
x2, y2 = get_pts(plane, p2)
x3, y3 = get_pts(plane, p3)
def sign(x):
if abs(x) < 1e-5: return 0
if x < 0: return -1
return 1
signs = set((
(sign(x1-xc),sign(y1-yc)),
(sign(x2-xc),sign(y2-yc)),
(sign(x3-xc),sign(y3-yc))
))
if len(signs) == 1: return True
if (1,1) in signs:
signs.discard((1,0))
signs.discard((0,1))
if (1,-1) in signs:
signs.discard((1,0))
signs.discard((0,-1))
if (-1,1) in signs:
signs.discard((-1,0))
signs.discard((0,1))
if (-1,-1) in signs:
signs.discard((-1,0))
signs.discard((0,-1))
if len(signs) == 1: return True
def arc_dir(plane, c, p1, p2, p3):
xc, yc = c
x1, y1 = get_pts(plane, p1)
x2, y2 = get_pts(plane, p2)
x3, y3 = get_pts(plane, p3)
theta_start = math.atan2(y1-yc, x1-xc)
theta_mid = math.atan2(y2-yc, x2-xc)
theta_end = math.atan2(y3-yc, x3-xc)
if theta_mid < theta_start:
theta_mid = theta_mid + 2 * math.pi
while theta_end < theta_mid:
theta_end = theta_end + 2 * math.pi
return theta_end < 2 * math.pi
def arc_fmt(plane, c1, c2, p1):
x, y, z = p1
if plane == 17: return "I%.4f J%.4f" % (c1-x, c2-y)
if plane == 18: return "I%.4f K%.4f" % (c1-x, c2-z)
if plane == 19: return "J%.4f K%.4f" % (c1-y, c2-z)
def douglas(st, tolerance=.001, plane=None, _first=True):
"""\
Perform Douglas-Peucker simplification on the path 'st' with the specified
tolerance. The '_first' argument is for internal use only.
The Douglas-Peucker simplification algorithm finds a subset of the input points
whose path is never more than 'tolerance' away from the original input path.
If 'plane' is specified as 17, 18, or 19, it may find helical arcs in the given
plane in addition to lines. Note that if there is movement in the plane
perpendicular to the arc, it will be distorted, so 'plane' should usually
be specified only when there is only movement on 2 axes
"""
if len(st) == 1:
yield "G1", st[0], None
return
l1 = st[0]
l2 = st[-1]
worst_dist = 0
worst = 0
min_rad = sys.maxint
max_arc = -1
ps = st[0]
pe = st[-1]
for i, p in enumerate(st):
if p is l1 or p is l2: continue
dist = dist_lseg(l1, l2, p)
if dist > worst_dist:
worst = i
worst_dist = dist
rad = arc_rad(plane, ps, p, pe)
#print >>sys.stderr, "rad", rad, max_arc, min_rad
if rad < min_rad:
max_arc = i
min_rad = rad
worst_arc_dist = 0
if min_rad != sys.maxint:
c1, c2 = arc_center(plane, ps, st[max_arc], pe)
lx, ly, lz = st[0]
if one_quadrant(plane, (c1, c2), ps, st[max_arc], pe):
for i, (x,y,z) in enumerate(st):
if plane == 17: dist = abs(math.hypot(c1-x, c2-y) - min_rad)
elif plane == 18: dist = abs(math.hypot(c1-x, c2-z) - min_rad)
elif plane == 19: dist = abs(math.hypot(c1-y, c2-z) - min_rad)
else: dist = sys.maxint
#print >>sys.stderr, "wad", dist, worst_arc_dist
if dist > worst_arc_dist: worst_arc_dist = dist
mx = (x+lx)/2
my = (y+ly)/2
mz = (z+lz)/2
if plane == 17: dist = abs(math.hypot(c1-mx, c2-my) - min_rad)
elif plane == 18: dist = abs(math.hypot(c1-mx, c2-mz) - min_rad)
elif plane == 19: dist = abs(math.hypot(c1-my, c2-mz) - min_rad)
else: dist = sys.maxint
#if dist > worst_arc_dist: worst_arc_dist = dist
lx, ly, lz = x, y, z
else:
worst_arc_dist = sys.maxint
else:
worst_arc_dist = sys.maxint
#if worst_arc_dist != sys.maxint:
#print >>sys.stderr, "douglas", len(st), "\n\t", st[0], "\n\t", st[max_arc], "\n\t", st[-1]
#print >>sys.stderr, "\t", worst_arc_dist, worst_dist
#print >>sys.stderr, "\t", c1, c2
if worst_arc_dist < tolerance and worst_arc_dist < worst_dist:
ccw = arc_dir(plane, (c1, c2), ps, st[max_arc], pe)
if plane == 18: ccw = not ccw # wtf?
yield "G1", ps, None
if ccw:
yield "G3", st[-1], arc_fmt(plane, c1, c2, ps)
else:
yield "G2", st[-1], arc_fmt(plane, c1, c2, ps)
elif worst_dist > tolerance:
if _first: yield "G1", st[0], None
for i in douglas(st[:worst+1], tolerance, plane, False):
yield i
yield "G1", st[worst], None
for i in douglas(st[worst:], tolerance, plane, False):
yield i
if _first: yield "G1", st[-1], None
else:
if _first: yield "G1", st[0], None
if _first: yield "G1", st[-1], None
class Gcode:
"For creating rs274ngc files"
def __init__(self, homeheight = 1.5, safetyheight = 0.04, tolerance=0.001,
spindle_speed=1000, units="G20",
target=lambda s: sys.stdout.write(s + "\n")):
self.lastx = self.lasty = self.lastz = self.lasta = None
self.lastgcode = self.lastfeed = None
self.homeheight = homeheight
self.safetyheight = self.lastz = safetyheight
self.tolerance = tolerance
self.units = units
self.cuts = []
self.write = target
self.time = 0
self.spindle_speed = spindle_speed
self.plane = None
def set_plane(self, p):
assert p in (17,18,19)
if p != self.plane:
self.plane = p
self.write("G%d" % p)
def begin(self):
"""\
This function moves to the safety height, sets many modal codes to default
values, turns the spindle on at 1000RPM, and waits for it to come up to
speed."""
self.write(self.units)
self.write("G0 Z%.4f" % (self.safetyheight))
self.write("G17 G40")
self.write("G80 G90 G94")
self.write("S%d M3" % (self.spindle_speed))
self.write("G04 P3")
def flush(self):
"""\
If any 'cut' moves are stored up, send them to the simplification algorithm
and actually output them.
This function is usually used internally (e.g., when changing from a cut
to a rapid) but can be called manually as well. For instance, when
a contouring program reaches the end of a row, it may be desirable to enforce
that the last 'cut' coordinate is actually in the output file, and it may
give better performance because this means that the simplification algorithm
will examine fewer points per run."""
if not self.cuts: return
for move, (x, y, z), cent in douglas(self.cuts, self.tolerance, self.plane):
if cent:
self.write("%s X%.4f Y%.4f Z%.4f %s" % (move, x, y, z, cent))
self.lastgcode = None
self.lastx = x
self.lasty = y
self.lastz = z
else:
self.move_common(x, y, z, gcode="G1")
self.cuts = []
def end(self):
"""End the program"""
self.flush()
self.safety()
self.write("M2")
def exactpath(self):
"""\
Set exact path mode. Note that unless self.tolerance is set to zero,
the simplification algorithm may still skip over specified points."""
self.write("G61")
def continuous(self, tolerance=0.0):
"Set continuous mode."
if tolerance > 0.0:
self.write("G64 P%.4f" % tolerance)
else:
self.write("G64")
def rapid(self, x=None, y=None, z=None, a=None):
"Perform a rapid move to the specified coordinates"
self.flush()
self.move_common(x, y, z, a, "G0")
def move_common(self, x=None, y=None, z=None, a=None, gcode="G0"):
"An internal function used for G0 and G1 moves"
gcodestring = xstring = ystring = zstring = astring = ""
if x == None: x = self.lastx
if y == None: y = self.lasty
if z == None: z = self.lastz
if a == None: a = self.lasta
if x != self.lastx:
xstring = " X%.4f" % (x)
self.lastx = x
if y != self.lasty:
ystring = " Y%.4f" % (y)
self.lasty = y
if z != self.lastz:
zstring = " Z%.4f" % (z)
self.lastz = z
if a != self.lasta:
astring = " A%.4f" % (a)
self.lasta = a
if xstring == ystring == zstring == astring == "":
return
if gcode != self.lastgcode:
gcodestring = gcode
self.lastgcode = gcode
cmd = "".join([gcodestring, xstring, ystring, zstring, astring])
if cmd:
self.write(cmd)
def set_feed(self, feed):
"Set the feed rate to the given value"
self.flush()
self.write("F%.4f" % feed)
def cut(self, x=None, y=None, z=None):
"Perform a cutting move at the specified feed rate to the specified coordinates"
if self.cuts:
lastx, lasty, lastz = self.cuts[-1]
else:
lastx, lasty, lastz = self.lastx, self.lasty, self.lastz
if x is None: x = lastx
if y is None: y = lasty
if z is None: z = lastz
self.cuts.append([x,y,z])
def home(self):
"Go to the 'home' height at rapid speed"
self.flush()
self.rapid(z=self.homeheight)
def safety(self):
"Go to the 'safety' height at rapid speed"
self.flush()
self.rapid(z=self.safetyheight)
|