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1 Introduction
This is not a user manual, it is a technical report written to help developers who
want to know how the software works so they can change it and make it better.
With very few exceptions all references referred to in this report were available
at the time of writing as free downloads on the internet. The biggest single one
exception is the book, Multiple View Geometry in Computer Vision[8], which
should be available at most University libraries and is considered the “bible” in
the Computer Vision/Projective Geometry field.

This report is split into sections explaining the different parts of the program,
starting with the properties file that contains the parameters loaded at start-up.
Then the design of the calibration sheet is described and the algorithms used
are described with references to the original papers for more details.

A brief outline of the steps in this program are as follows:

1. Find the ellipses in the images and the circles in the calibration image.

2. Match these found ellipses in the images with the circles in the calibration
image. This step is the focus of a paper that is currently being written.

3. Initially assume the centres of the circles and the centre of the ellipses are
the same point and use these point pair matches to estimate the camera
parameters.

4. Adjust the camera parameters to get a better estimate including adjusting
one half of the point pairs to be a better match based on the estimate of
the camera parameters.

5. For each image also segment the image to identify the known calibration
sheet. This step also calculates 2d edge information which is not currently
used.

6. Once all the camera parameters have been estimated for all images the the
image segmentation information of each image is used to create a rough
silhouette outline that is the maximum volume of interest.

7. This is then converted to triangles and output to an STL file.

Other steps that may produce a better estimation of the object within this
rough silhouette outline have been coded but have been commented out as they
currently do not give a good representation of the object.

1. The 2d edges found in each image are used to produce rays in 3d space,
limited to those that intersect the volume of interest, and 3d edge points
estimated by triangulation of intersecting rays.

2. This point cloud is then used as input to a space carving algorithm that
carves the space into a series of interlocking tetrahedrons.

3. Using the information of which camera originated the rays that were used
for estimating each point, tetrahedrons are eliminated that are occluding
a point in one of the camera views for which is known to be visible.
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4. Further eliminate all tetrahedrons that do not have a pathway through
other tetrahedrons to the ones that have as one of their vertices the bottom
point - i.e. the lowest z coordinate.

5. The tetrahedrons left are assumed to describe the shape of the object in
question and so the hull is converted to triangles and written to file.

Before getting into the actual program some terminology is explained in the
next section and the assumptions built into the software explained in Section
1.2.

1.1 Vector and Matrix terminology
A large portion of the algorithms used for this software package are manipula-
tions of vectors and matrices. When talking about vectors and matrices we also
use the term scalar to mean a single number, whereas a vector is a 1 dimen-
sional set of numbers, normally written in a column, with a matrix being a 2
dimensional set of numbers, normally written as a rectangular sequence in rows
and columns. Just as a scalar can be defined as a 1-vector, so a n-vector can be
defined as an nx1 matrix. When the individual elements of a vector or matrix
are referenced they are normally referenced with subscript numbers based on
the row and then the column index.

There are a number rules for simple algebra about how vectors and matrices
can be combined with other vectors and matrices. For a good introduction,
see the Linear Algebra set of You Tube videos from the Khan Academy [3]. It
is assumed that the reader has an understanding of these simple interactions
throughout this report. Some of the common symbols used in this report are:

1. Identity matrix: Each square matrix has its own identity matrix,I, where
every element is 0 except for the diagonal elements which are 1 when the
row and column indices are the same.

2. The zero matrix: All elements of a matrix are 0 and the matrix itself has
the symbol of 0.

3. The transpose of a matrix: The rows and columns of a matrix are switched,
this is represented by a superscript T e.g. AT

4. The inverse of a matrix: Only square matrices have an inverse whereby
the matrix multiplied by its inverse gives the identity matrix, represented
by a superscript -1 i.e. AA−1 = I

5. The pseudo-inverse of a matrix: Some square matrices don’t have an exact
inverse but there are some processes to estimate it and the matrix so
estimated is called a pseudo inverse, represented by a superscript + i.e.
AA+ w I

6. Vector cross product and dot product: represented by × and . respectively.

7. Vector Euclidean length: expansion of simple Pythagorean formula to n
dimensions:

√
a2
1 + a2

2 + . . .+ a2
n and is represented by double vertical

lines around the vector e.g.||a||
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1.2 Assumptions written into the software
For simplicity of user tuning there are a number of assumptions written into
the software that cut down on the number of parameters that need to be set
for good object recognition. Most of the these are to do with the design of the
calibration sheet and camera placement with respect to the calibration sheet.
These assumptions are:

• The calibration sheet is simply a set of black circles on a white background
that are all the same size which provide a uniquely distinguishable pattern
from all allowable viewing angles. For more information on the design of
the calibration sheet see Section 3.

• It is assumed that the calibration sheet in an image is lying on a flat
surface.

• It is assumed that the pixels in the image used as the source for the printed
calibration sheet are square and that the image is scaled to fill the entire
printable area of the page. This printable area is defined by the selected
size of the page minus the vertical and horizontal margins specified. The
user must indicate whether or not the aspect ratio was preserved when
this scaling occurred.

• If the images are assumed to be taken with the same camera with the
same zoom and focus settings and there are 3 or more images at the same
resolution, no assumptions need to be made about the internal camera
parameters. If there are only two images from the same camera at static
zoom, focus and resolution then it is necessary to assume that there is no
skew in the camera image axes, i.e. they are perpendicular, although this
is not normally a problem except for poorly made cameras or when taking
a picture of a picture. If the images are to be considered independently,
then one further assumption, in addition to the no skew assumption, must
initially be made, that is either that the focal point of the camera is in the
exact center of the image or that the camera has exactly square pixels.
The focal point may not be in the exact center of the image but it is a good
first guess and will probably only be off by a few pixels. It may also be
able to be detected and corrected if there is considerable radial distortion
in the image. This adjustment is not currently implemented, nor is the
user selection of whether all images are taken with the same camera. The
assumption that the image has exactly square pixels is fine if there is
EXIF metadata attached as EXIF standards [2]specifically state that the
pixels are assumed to be square but this metadata is not mandatory so the
assumption of the position of the focal point is made instead. Although
there is code to deal with this hierarchy of assumptions the interface to
allow the user to choose which set of assumptions to use has not been
created and so all images are currently considered independently of each
other.

• It is currently assumed that the camera does not have much radial dis-
tortion, the functionality to deal with fish eye lenses etc. is currently
commented out as there has not been the chance to test it out.
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• It must be assumed that all images contain the full calibration sheet and
while some of it may be obscured by the object to be detected, the image
is not a close up of only a portion of the calibration sheet.

• It is assumed that the object to be detected is within a volume of space
defined by the dimensions of the calibration sheet. This volume of interest
is the volume of space directly above the calibration sheet to a height equal
to the larger of the width or height of the calibration sheet.

• An image taken at a lower viewing angle is assumed to be taken with a
camera closer to the calibration sheet than one that is at a higher viewing
angle such that in the extreme at the user provided lowest viewing angle
the camera is vertically above the edge of the calibration sheet. This
assumption is not normally going to matter except at either extreme angles
or extreme distances where this assumption is used for limits on the size
of the ellipses that need to be identified in the image.

• Images are assumed to be taken with the camera above the calibration
sheet with the object to be detected sitting on top of the calibration sheet
and unmoved, with respect to the calibration sheet, in all images. This
means that some objects with indentations near the bottom of the object
may not be detected properly. In the future it is hoped to provide an
interface for the user to invert the object and to combine the two or more
partially detected objects to form a better representation of the object but
this is not currently implemented.

• The object to be detected is assumed to not have a pattern on it that can
be confused with the calibration circles viewed at an angle.

• The object is assumed to be in contact with the calibration sheet.

• The GUI is designed for use on a screen with a resolution of least 640x480.

2 Configuration file
The main configuration file used is specified by running the java application at
the command line with the preferences file as an argument. If the file does not
exist or the value needed does not exist default values are used. If it is not
specified the file to be used defaults to the users home under the .reprap folder
and is called reprapscanning.properties. Th fields in this configuration file can
be split into three sets of values: those that may be of use to average user or
application, those that manipulate the internal algorithms, and those that are
specifically for debugging.

2.1 Core Settings
Most of these settings are not complicated and are changed by the user in the
normal running of the algorithm. There is no specialised knowledge needed to
use them and it is expected that they will be manipulated at will by those using
the program, mostly through the GUI but occasionally by modification of the
preferences file.
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SaveOnProgramWindowClose - A boolean setting to set what happens to pro-
perties in this file on the user pushing close button on the window,
defaults to true which will rewrite the properties file.

SaveOnProgramCancel - A boolean setting to set what happens to properties
in this file on the user pushing the cancel button of the program.
Defaults to false which will not rewrite the properties file.

SaveOnProgramFinish - A boolean setting to set what happens to properties
in this file on normal exiting of the program when the user presses
the finish button. Defaults totrue which will rewrite the properties
file.

AutomaticStep[1-6] - A series of boolean settings to allow the program to take
the default settings in this file and apply them without the user
having the option to change them at each step via the GUI. They
all default to false but can be used by outside programs to link into
this program and run it in a customised way. Steps 1 and 2 are
for user input to change the default settings, so if they are set to
automatic the settings from this file are used without any changes.
Currently setting steps 3-5 as automatic does nothing as no user
interaction is needed anyway. Eventually this could be used to read
previously calculated results from file rather than calculate them. If
step 6 is set to automatic then the program will exit automatically
without the user having to press the Finish button.

BlankOutputFilenameOnLoad - A boolean setting to set what happens when
the properties file is parsed. If there exists a default output file and
this is set to true it is blanked. Note that the GUI will not continue
if the step in which the output filename is selected is not set to
automatic and the filename is blank. This means that the user must
choose an output filename. Defaults to true.

ImageFileList[0-n] - This is the list of the images to be used to create the 3D
model. Defaults to an empty list. Note that when the application
is run this list is sanity checked to make sure each file exists, is a
readable image file, and is not already in the list.

CalibrationPatternFileList[0-n] - This is the list of the image files that are pos-
sible calibration patterns to choose from. Defaults to an empty list.
Note that when the application is run this list is sanity checked to
make sure each file exists, is a readable image file, and is not already
in the list.

CurrentCalibrationPatternIndexNumber - This references the CalibrationPat-
ternFileList and is the currently selected calibration sheet. Defaults
to 0 i.e. the top of the list.

PaperSizeNameList[0-n] - Taken together these PaperSize lists determine the
selection of paper sizes available in the GUI drop down list. This
defaults to 2 names: “A4” and “US Letter”.
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PaperSizeWidthmmList[0-n] - Taken together these PaperSize lists determine
the selection of paper sizes available in the GUI drop down list.
This defaults to 2 settings only: the widths of A4 and US Letter in
millimetres i.e. 210 and 215.9 respectively

PaperSizeHeightmmList[0-n] - Taken together these PaperSize lists determine
the selection of paper sizes available in the GUI drop down list.
This defaults to 2 settings only: the heights of A4 and US Letter in
millimetres i.e. 297 and 279.4 respectively.

CurrentPaperSizeIndexNumber - This references the PaperSize list and is the
currently selected paper size. Defaults to 0 i.e. the top of the list.

PaperOrientationIsPortrait - Boolean setting indicating whether the calibration
sheet was printed in Portrait or not. If it was not printed in Portrait
it is assumed to be printed in Landscape. Defaults to true.

PaperSizeIsCustom - This boolean setting indicates whether or not the default
paper size selection is a Custom size or not. If it is then the list of
paper sizes mentioned above is not used and the paper is assumed
to be the size as specified by the below settings. Defaults to false.

PaperCustomSizeWidthmm - The size of the custom paper if selected, a mi-
nimum of 1mm, defaults to US Letter size i.e. 215.9mm. To be
displayed and manipulated in the GUI to 1 decimal place only.

PaperCustomSizeHeightmm -The size of the custom paper if selected, a mi-
nimum of 1mm, defaults to US Letter size i.e. 279.4mm. To be
displayed and manipulated in the GUI to 1 decimal place only.

PaperMarginHorizontalmm - The total of the left and right margins on the
printed sheet, defaults to 0. A sanity check is run to make sure it is
not larger than the currently selected paper size would allow. If it
is it is reset to zero.

PaperMarginVerticalmm - The total of the top and bottom margins on the
printed sheet, defaults to 0. A sanity check is run to make sure it is
not larger than the currently selected paper size would allow. If it
is it is reset to zero.

CalibrationSheetKeepAspectRatioWhenPrinted - It is assumed that when the
calibration sheet was printed it was scaled to fit the size of printable
area. If this boolean setting is set to true then this shrinking or en-
larging was done whilst keeping the aspect ratio the same. Defaults
to false.

OutputFileName - The filename of the file to save the output to. Defaults to
output.stl in the users home folder unless the BlankOutputFilena-
meOnLoad field is set to true, in which case it is blanked. When the
file is being saved this field is checked and if it is blank or invalid
then no file is saved.

OutputObjectName - Metadata field to put in the stl file. Defaults to empty
string.
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2.2 More Advanced settings to adjust the functioning of
the core algorithms

The settings for manipulating the algorithms used have names prefaced with
AlgorithmSetting. It is not currently intended that they should have their values
changed from within the GUI. They should not be changed by the average user
and consist of the following:

AlgorithmSettingEdgeStrengthThreshold - The threshold value is a value which
the edge strength (which is a value between 0 and 255) must be
greater than for the edge to be used. 0 means all edges detected will
be registered, 255 means none will. According to the original edge
detection paper [7] 20 is a good threshold for a noise-free image and
30 for a noisy one. This same threshold value does “double-duty”
as it is also used as the threshold value for determining whether a
greyscale value for a pixel (in the range 0-255) is to be considered
the same colour, either black or white, as another pixel which has
previously been chosen as the blackest or whitest pixel in the local
area. Defaults to 20.

AlgorithmSettingEllipseValidityThresholdPercentage - This validity threshold
is what percentage of pixels in the rectangle formed around an ellipse
that are outside the ellipse must be white, and what percentage of
pixels in the ellipse must be black before it can be considered a
valid ellipse. This test is done on the assumption that the ellipses
we wish to find are black ellipses on white paper and cuts down on
the number of inconsequential ellipses otherwise detected. This is a
whole number between 1 and 100, defaults to 60.

AlgorithmSettingMaxBundleAdjustmentNumberOfIterations - The maximum
number of times the bundle adjustment algorithm should try and
adjust a first estimate of a set of values. Must be a natural number
and defaults to 100.

AlgorithmSettingMaximumCameraAngleFromVerticalInDegrees - The maximum
angle the calibration sheet will be viewed at. A whole number in
the range 0-89. If it is less than zero it is reset to zero and if it is
larger than 89 it is reset to 89. Defaults to 80.

AlgorithmSettingMinimumNumberofIntersectingRayPairsForPointEstimation -
3D points are estimated from triangulation based on multiple pairs
of intersecting rays. This number must be a whole number. If it is
greater than or equal to the number of images currently being pro-
cessed then only those points that appear in all images as 2d edge
points will be estimated. Defaults to 1. Currently not used.

AlgorithmSettingStepsAroundCircleCircumferenceForEllipseEstimationInBundleAdjustment
- During the bundle adjustment process the center of the ellipse in
the image is calculated using a deformation of the circle/ellipse on
the calibration sheet using a number of points on the circumference
of said ellipse. This number must be grater than or equal to 4 and
defaults to 16. The more points, the more accurate the exact ellipse
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shape and the more time it will take. Note that although the exact
ellipse may change with more points, the ellipse center probably
won’t change much.

AlgorithmSettingVolumeSubDivision - The volume of interest, defined by the
dimensions of the calibration sheet is sub-divided into a 3d grid
of smaller volumes that define how small a feature is able to be
detected. It is hoped that this could in the future be further refined
to be a recursive sub-division. This whole number defines how fine
that grid should be. Defaults to 128 meaning that the volume is
divided into a grid of 128x128x128 sub-volumes. When used with
a calibration sheet on an A4 or Letter sheet of paper this leads to
voxels a little under 3mm on their largest side.

2.3 Specific Debugging settings
These debugging options are subject to change as developer needs change but
currently these are the settings available:

DebugSaveOutputImagesFolder - Where to save images created by the setting
of the other debug flags. If set to an empty string the images will
not be saved. Defaults to an empty string.

DebugShowImageOverlay - Boolean setting that defaults to false. If set to true
this will save a greyscale version of each input image with various
found and deduced features overlaid on it such as the estimated ca-
libration sheet circles and their centers, the centres of the ellipses
found in the image, the edges of the calibration sheet and the cal-
culated 3d edge points.

DebugShowImageSegmentation - Boolean setting that defaults to false. If set
to true this will save a 4 colour image (black/white/light grey/dark
grey) of each input image once it has been segmented into calibra-
tion sheet (white), edge (light grey), unknown(dark grey), or other
(black).

DebugCalibrationSheetBarycentricEstimate - Boolean setting that defaults to
false. If set to true this will save a greyscale image of the bary-
centric estimate of the calibration sheet for each input image along
with white dots marking the centers of the calibration sheet the
barycentric estimate is trying to match.

3 Calibration sheet design
The calibration sheet is assumed to be a simple white background with black
circles on it. These circles are all the same size and should be placed in a
semi-random manner around the sheet so that when viewed from any angle the
configuration of the circles is unique. For best results this configuration should
also be unique for configurations where some of these circles are obscured.

It is not known what the best calibration sheet is, but the worst would be
a set of circles arranged around the center of the calibration sheet in a circle
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as this will look the same from multiple directions. Another bad pattern is a
regular grid pattern which will have at least 2 directions that could produce the
same pattern. The example calibration sheet included with the software has
worked for all test images so far but it is designed to be used in such a way that
at least 6 of the 9 circles be visible in all images which limits the size of objects
that can be processed.

Note that there when the estimation of the radial distortion matrix for large
amounts of distortion, normally used when using a fish-eye lens, is implemented
it will require at least 8 calibration points to be visible in the image for the
estimation to work. If there are less points it will fail back to the single pa-
rameter estimation model which works best with low levels of distortion. This
will therefore probably require a new calibration sheet with a larger number of
circles so as to have at least visible in each image.

This seems to be a new way of thinking about calibration sheets and so a
lot of research still needs to be done to figure out a way of defining a “best”
calibration sheet.

4 Find Ellipses and Circles in the image
The ellipse detection mechanism used is specific for the task at hand, i.e. finding
circles on a calibration sheet viewed at an angle, and relies on only two adjustable
parameters, one threshold value for the initial edge detection, and one parameter
describing the lowest viewing angle. The ellipse detection algorithm assumes the
ellipses to be detected are near-circles viewed from an angle and at first glance
needs 3 limiting parameters: maximum major semi-axis length, minimum major
semi-axis length, and the lowest view angle. It is shown in Section 4.2 that the
maximum and minimum major semi-axis lengths can be calculated from other
information so only the lowest view angle needs to be defined. This is a value
greater than or equal to 0 and less than 90 degrees. The view angle is measured
from the normal to the calibration plane so 0 degrees is a view from directly
above the calibration sheet. The algorithm broadly follows that laid down in
[18] with the addition of some tests due to the use of the Absolute Difference
Mask (ADM) algorithm[7] for edge detection which gives not only edge position
and strength but also direction information. The algorithm is a combinatorial
approach to the problem so the edge map used as input for the algorithm is
filtered before being used for ellipse detection using suggestions given in [19]. A
brief outline of the whole process is detailed below:

1. Optionally pre-process the image with a small Gaussian blur filter which
is designed to smooth out random noise.

2. Use the ADM algorithm to create edge strength and direction maps. In the
case of edges of ellipses the direction so produced will be the estimated
direction of the tangent at that point. The edge direction will be one
of 4 possible directions: vertical, horizontal, or one of the two diagonal
directions.

3. Look in the 3x3 neighbourhood of the edges and if it isn’t the maximum
within this window, or under a threshold, suppress it. The threshold value
used is the one loaded from the preferences file with the default value of
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20 is taken from the suggested values from [7] of 20 for a nosie free image
and 30 for a noisy image.

4. Remove any additional spurious edge points. This includes: points at the
edge of the image that were detected as edges simply due to being at the
edge of the image and excessively connected edge points which are defined
as in i.e. edges that have 3 or more edge points within a circle of radius√

2. There is another possible set of edge points that are suggested by[19]
that can be deleted which are those points that are completely isolated
i.e. there are no other edge points within the 3x3 mask centred on the
edge point. However, while this is purported to work for the algorithm
detailed in the original paper, the actual ellipse detection algorithm used
needs this additional information.

5. Put the remaining edges and tangent directions into 1D arrays and, if the
option is selected, to have a 2D sparse array with index pointers to the
1D array for the edges. This optional memory structure is used later for
finding a subsets of the 1D arrays based on a bounding rectangle around
a point.

6. The minimum major semi-axis length is compared to the resolution of
the edge finding algorithm to make sure it is greater and if it isn’t, it is
reset to this value. The resolution of the edge finding algorithm refers to
the idea that a point on the transition in an image between, for example,
black and white, may be found as belonging to an edge on both sides of
the actual dividing line, one where the edge is detected as a change from
white to black and another where it is detected as a change from black
to white. The resolution is the minimum distance away two edge pixels
must be before they can be known to not be referring to the same point.
In this case the ADM algorithm has a resolution of 5 pixels due to its use
of the 5x5 neighbourhood in finding edge information.

7. The maximum major semi-axis is similarly compared to the length of the
diagonal of the image and it is reset to that if the diagonal length is
smaller.

8. Find ellipses using the edge arrays created. For each of the edge pixels (i)
from 1 to N-1 do the following:

(a) Go through each of the edge pixels (j) from i+1 to N, optionally
limited to those within a bounding rectangle based on the maximum
long axis length, and test the (i,j) pair to see if it is possible they are
on opposite sides of an ellipse. These tests are:

i. The tangent directions of the two edges are the same.
ii. The distance between the two edge pixels is between the limiting

minimum and maximum long axis length.
iii. The centre point on the line between the two edge points is not

within any of the ellipses detected so far.

(b) If these tests are passed the pair of edges are assumed to be on op-
posite sides of the same ellipse long axis and so from this assumption
the major semi-axis length, now labelled a, is calculated as well as
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the centre point used in the last comparison is used as the center
point for the ellipse and the angle of the long axis compared to the
x-axis, the orientation angle τ using equations 1-4 in[18].

(c) The accumulator is reset and the minimum length of the minor semi-
axis, b, is calculated using the calculated a and the lowest view angle.
From [10] we have a formula that can be used to relate the eccentricity
of an ellipse to the view angle on the assumption that the ellipse is
actually a circle: e = sin(θ). Given the standard definition of the
eccentricity: e2 = a2−b2

a2 = 1− b2

a2 and the Pythagorean trigonometric
identity cos2(θ) + sin2(θ) = 1 we can restate this as cos(θ) = b

a
or, rearranging to solve for b, b = a cos(θ). If this is smaller than
the resolution of the edge finding algorithm, then b is reset to the
resolution.

(d) For each edge pixel (k) from 1 to N, optionally limited to those within
a bounding rectangle based on the calculated center of the ellipse
and a, if the edge pixel is not i or j, and the distance between the
calculated center of the ellipse and edge k is less than or equal to
a, calculate the minor semi-axis length b using equations 5 and 6 in
[18]and increment the accumulator.

(e) Find the element in the accumulator with the maximal count. If
the edges used to create this b value come from all 8 octants of the
ellipse this value is confirmed as the new semi-minor axis length b.
Add the ellipse to the output list of detected ellipses and take out
any edges from the array that are within this ellipse. Exit the j loop
prematurely on the assumption that an edge is part of a maximum
of one ellipse.

4.1 Circle detection in the calibration sheet
A perfect circle is simply an ellipse with both a and b of the same length. Given
the pixelation of the calibration image a and b will not be exactly the same
length but this is taken into account by setting the lowest angle input into
the ellipse detection algorithm to be 10 degrees meaning that allowable minor
semi-axis value is 98.5%-100% of the detected major semi-axis value.

As no information about the size of the circles in the calibration sheet is
known, although it is assumed that all the circles are the same size, the minimum
major semi-axis length is initially set to 0 and the maximum the diagonal length
of the calibration sheet. The optional bounding rectangle technique is not used
as the calculated bounding rectangle would be a significant portion of the image
and the sparse nature of the edge points means that significant amounts of time
would be taken up in simply finding the next edge point to process.

Once one circle is found with these parameters the minimum and maximum
major semi-axis lengths are reset based on the parameters of this circle.

When all the near-circular objects have been found the radius is estimated
as the average of the minor and major semi-axes of the detected ellipses in the
calibration sheet.

The size and margins of the printed calibration sheet are then taken into
account to give the size and shape of the printed circles. In the case where the
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printed calibration sheet does not have the aspect ratio of the calibration sheet
image preserved, this produces an axis aligned ellipse rather than a circle.

4.2 Calculation of the maximum and minimum semi-axis
lengths for ellipse detection

It is assumed that as the viewing angle gets further from the vertical then the
camera gets closer to the calibration sheet so that in the limit where we are
at the lowest angle the camera is directly above the edge of the calibration
sheet. Therefore if we construct a right angle triangle with one of the sides
being the length of the diagonal of the image and the angle opposite it being
the lowest viewing angle θ then we have constructed with the lengths of the
two unknown sides being the closest and furthest distances to any possible
ellipses at the lowest view angle. Using the standard trigonometric definition
sin(θ) = opposite

hypotenuse we can find the length of the hypotenuse, and from that
and the standard Pythagoras equation we can find the length of the other side.
Using these two lengths we now have a ratio of the maximum to minimum
semi-axis lengths for a circle viewed at the the lowest viewing angle, given the
above assumptions. Multiplying this by the ratio of the printed calibration
sheet calculated semi-axis lengths if needed, due to the lack of preservation of
the aspect ratio, gives a final ratio for the printed ellipse. Now if we can find
either a maximum or minimum semi-axis length we can calculate the other.

It is further assumed that the image contains all of the calibration sheet
so that we can calculate the maximal size of the ellipses which is if the image
contains nothing but the calibration sheet. For this to occur the camera must
be directly above the calibration sheet center and the circles will be seen as
ellipses with the same axis ratio as the printed calibration sheet representation
calculated above. To get the maximum major semi-axis length therefore we just
need the semi axis lengths of the printed ellipses in the calibration sheet, which
were calculated above, and the ratio of width to height in the calibration sheet
and image, fundamental properties of the image.

5 Matching points
The calibration sheet has a series of n identical circles on it which, when imaged
from an angle, become ellipses, and the ellipse finding algorithm finds m ellipses
in the image. It is assumed that the ellipse finding algorithm correctly matches
a subset of the circles with no extraneous ellipses. To a first approximation the
centre of the imaged ellipse is also the center of the original calibration circle so
we then have two sets of points that we wish to pair up but no way of knowing
how to do so.

If the camera position, and therefore perspective transformation warping of
the calibration sheet, were known we could take a subset of point pairs and
calculate where the image points corresponding to the other calibration points
were based on their relationship to each other from the known calibration sheet.
With no information on how these points pair up we can use a combinatorial
approach and try every combination and find the one with least error.

However, the reason we are doing this is to find the camera position in
the first place. To solve this “chicken and egg” situation we use a barycentric
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coordinate transform as a first approximation to the perspective transform.

5.1 Barycentric Coordinate Transform
Standard barycentric coordinates are based on the relative distance from one
point to each of a set of two or three points. The number of anchor points
define the number of dimensions the point in question is restricted to. With
two anchor points the point we are interested in can only lie on a line passing
through the anchor points, with three it lies on a plane constructed to include
the three anchor points. As these barycentric coordinates give a relative position
of a point with respect to the anchor points, they can be used to transform a
point to another coordinate system so long as the mapping between the anchor
points is known. While this transformation is not exactly the same as the
correct projective transformation would give, it is a good estimate in the local
neighbourhood.

The easiest form of barycentric coordinates to visualise are the 2 coordinates
needed to find a point on a line segment between two endpoints. Any point
on the line can be referred to by how close it is to the two points, with the
coordinates adding up to one. If the point is exactly at the end of the line, the
coordinate relating to that end-point will be 1 and the other 0. If it is at the
half way point between the two, both coordinates will be 0.5. If it is closer to
one end than the other, the coordinate for the end it is closer to will be more
than the other. This can be extended by the use of negative numbers to refer
to a point on the line past the endpoints of this line segment and it can also be
further extended to form the standard triangular barycentric coordinates with
3 coordinates that relate a point in a plane to its relative placement to the 3
corner points of a triangle.

5.2 Combination versus Permutation
When counting the number of different subsets of r unique elements in a set of n
unique elements the total number of subsets is different depending on whether
the order of elements in the subsets matter or not. If the order of elements is of
no importance then it is called a combination of elements, and a permutation
if order is important. These are symbolised by Cnr and Pnr and are defined as
follows:

Pnr = n!
(n−r)!

Cnr = n!
r!(n−r)!

where n! is the standard factorial expression i.e. for all positive integers
n! = n ∗ (n− 1) ∗ (n− 2) ∗ ... ∗ 2 ∗ 1 with 0! being defined as 1.

In BigO order notation both these are close to O(nr) for r � n.
Programmatically, both combinations and permutations can be done using

nested for loops, with the variable affected being an index into the array of
n elements, although for permutations there also needs to be a check for the
uniqueness of each element. The nested for loops for combinations are simply
described by the following pseudo-code:

for item1 = 1 to (n-r+1) do

for item2 = item1+1 to (n-r+2) do
...
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for itemr = itemr−1+1 to n do
...

The code for permutations are more complex but can be expressed as below:

for item1 = 1 to n do

for item2 = 1 to n do
skip = item1==item2

if !skip for item3= 1 to n do
...
skip = itemr−1== item1 or itemr−1== item2 or ... itemr−1== itemr−2

if !skip for itemm = 1 to n do

skip = itemr== item1 or itemr== item2 or ... itemr== itemr−1

if !skip
...

5.3 Outline of method
Given that if the anchor points for the barycentric transformation are spread
further apart they are more representative of the global perspective transfor-
mation we can cut down the work the algorithm needs to do if we choose the
anchor points intelligently. Rather than using every combination of three image
points, we find the single best combination of three image points defined by
those that form a triangle with the largest area and then match those three
image points to every permutation of the calibration points to find the best
match. One formulation of the area of a triangle is 1

2 ||AB × AC|| where AB
and AC are the vectors between the two pairs of points forming the corners of
the triangle. As we don’t actually need to know the exact area, we just want
to rank them, we simply use the magnitude of the cross product of these two
vectors to avoid the unnecessary division by two and find the three points that
have the largest magnitude of their cross product.

Once the anchor image points have been found for each of the permutations
of the point pairs formed by pairing these points up with 3 of the calibration
sheet points we do the following:

1. For each calibration point that has not yet been paired up, label this point
the source point and find the 3 closest calibration points that have been
paired up.

2. Use these 3 points to give the source point barycentric coordinates. If
the source point is collinear with two of these points, we can simplify the
problem and just use these two points to give 2 barycentric coordinates
rather than 3 in the more general case.

3. Use these barycentric coordinates and the image points that are the pairs
to the 3 calibration points to convert the source barycentric coordinates
to an image point.

4. Measure the Pythagorean distance from this point to the nearest unpaired
image point and call this the distance error for this point pair match
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5. From the point pair matches generated by steps 1-4, find the point pair
match with the smallest distance error and add this to the array of point
pairs.

6. Repeat steps 1-5 m-3 times to find all point pairs and cumulative error.
Note that if the cumulative error is greater than that of the current conten-
der, the loop can be exited prematurely to go onto the next permutation.

7. Once all the points have been matched, find the 3 closest calibration points
to each of the anchor points and use these to find the respective image
point and add the distance error for each of these three matches to the
cumulative error. Note that this doesn’t need to be done if the cumulative
error is already greater than the current contender.

8. If the cumulative error for these point pair matches is less than that for the
current contender, this set becomes the new “correct” point pair match.

The final correct combination is then the combination that has the lowest cumu-
lative distance error. As currently proposed m ≤ n so the worst case is O(n5).
Obviously then, if n is not relatively small this algorithm becomes infeasible
but at a minimum we only need 4 point pairs for our calculations, see section
6.2, so we need only enough points that four will always be visible. The current
calibration sheet has nine points and completes these combinatorial calculations
in a few tens of microseconds on a modern (2009) dual core machine. A paper
is currently being written that is mainly an expanded form of this explanation.

6 Camera Calibration from point pair matches
on planar calibration sheet

Note that the methodology stated here is in large part a rewording and more
expansive explanation of the method outlined by Zhang in [20]. Also note that
there were mistakes in some of the formulae in the original published paper that
have been fixed in the on-line version, available as a Microsoft Technical Report
from the Microsoft website.

6.1 Camera Calibration Overview
The goal of camera calibration is to be able to produce a 3x4 matrix (P) that
transforms a real world 3d homogeneous point into a 2d homogeneous image
point and conversely can be used to turn a 2d image point into a ray in the real
world. i.e. u

v
w

 = P


x
y
z
w


Once this matrix P has been calculated for each image we can then elicit

information about the shape of the object we are looking at by taking a real
world point and seeing what happens when we transform it into the image
coordinates of each image.

For our purposes the camera calibration matrix P can be broken down into
a number of sub-matrices in the following way:
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P = K[R|t]Z
where:

K A 3x3 matrix of the form K =

 α γ u0

0 β v0
0 0 1

which embodies the

internal parameters of the camera. The Zhang method estimates
these parameters from constraints that can be placed on a geometric
entity called the Image of the Absolute Conic (ω) which is then
decomposed to find the the camera matrix as ω = (KKT )−1. If the
camera matrix can be assumed to be the same for multiple images i.e.
the images were taken with the same camera with the same zoom,
lens settings, and resolution then the camera matrix can be reliably
estimated from 3 such images with 4 known point matches on the
calibration sheet in each image. This is because each image needs
four point matches on the calibration plane to be able to estimate a
planar homography that takes the calibration plane in the real world
and maps it to the image plane. Each one of these homographies
places two constraints on the Image of the Absolute Conic (IAC)
and so if we have 3 such homographies the camera matrix can be
estimated. If there are only two homographies or the images are
assumed to be independent of each other we need to make some
assumptions about the nature of the camera. These are discussed
in Section 6.4.

[R|t] A 3x4 matrix which can be further broken down into a 3x3 Rotation
matrix and a 3x1 translation vector. These matrices can be estima-
ted from a planar homography once the camera matrix K has been
found. See Section 6.5.

Z A 4x4 matrix which needs to be added as the Zhang method for esti-
mating the above matrices sets an arbitrary z scale. The real world
x and y axes are defined as being based on the x and y directions of
the calibration sheet with the scale being in real world millimetres
based in turn on scaling of the pixels of the calibration sheet using
the provided paper size and margins on the assumption that pixels
of the provided calibration sheet image are square. To provide for
the case where this is not true or there are rounding errors in the
calculations, the real world z scale is defined in its most general sense
to be the average of the x and y scales. A procedure is described
to calculate the z scale factor in order to offset the arbitrary sca-
ling based on the lengths of transformed unit vectors. This method
leaves only the ambiguity of the sign of the z scale which is solved
by assuming that the camera is always “above” the calibration sheet.
For the purposes of the calculations of K and [R|t], Z is assumed to
be the identity matrix. Once the z scale factor is found the matrix

Z is then modified to be of the form Z =


1 0 0 0
0 1 0 0
0 0 s 0
0 0 0 1

where s
is the internal z scaling factor. See Section 6.6.
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Note that we also have the complication that the image points so estimated
will not in general match up with the actual image due to the effects of lens
distortion. To get around this we also need a model to estimate the effect
of lens distortion on the image and negate it. There are two kinds of lens
distortion, radial and tangential, but as mentioned in [17], from experience
it has been shown that only radial distortion needs to be considered. There
are two models that are used in this software, one of which only works with
high radial distortion and one that only works with low radial distortion. The
first is to model distortion using a 3x3 matrix (D) calculated after the other
matrices based on the methodology used in [9] to re-envision radial distortion
as a Fundamental Matrix of distortion. In the case where there are less than the
minimum number of point pair matches to estimate this matrix or the resultant
matrix fails a sanity check on the position of the centre of the distortion, the
second model is used. As the radial distortion is modelled by an infinite series, a
distortion function is estimated based on a truncated form of this series with one
coefficient, k1,that needs to be estimated, similar to the original one suggested
in [17]. Once the distortion is estimated the image is pre-processed to take
out the radial distortion before transformations between real world and image
coordinates are done for detection of the object. The distortion is estimated for
each image separately as the distortion can be significantly different between
images, even on the same camera, due to differences in focal length and especially
zoom [14]. This means the user can just “point and shoot” and not have to worry
about keeping the focus and zoom the same between shots. See Section 6.7 for
more details.

Once all these parameters have been estimated individually they are fur-
ther refined collectively by a bundle adjustment algorithm, in this case the
Levenberg-Marquardt algorithm. See Section 6.8.

6.2 Estimating Planar Homography (H)
In this context we are wanting to take the calibration plane and transform it
for each image plane. This planar homography matrix, H, will then successfully
map all points lying on the calibration sheet onto the image. Note that as we
have defined the real world coordinate system by the placement of the calibration
sheet this will map all real world points with z=0 to the image but it does not
say anything about any other real world points. There are standard algorithms
for doing this and the one chosen was the normalised Direct Linear Transform
(DLT) algorithm. A short outline of this algorithm is given here but this is a
standard algorithm and is explained in detail in other sources, eg. Chapter 4
of [8]. This algorithm requires 4 or more point pair matches to give a unique
solution.

1. Create and apply normalising matrices to the two sets of points such that
the centroid of the set of points is at the origin and the average distance
from the origin is

√
2.

2. Each point pair gives 2 rows, each with 9 entries, in a matrix A where
Ah=0 with h being the 9 vector corresponding to the 9 entries in the 3x3
normalised planar homography matrix H’.

3. Use SVD to solve and find h. See Section B

20



4. From the 9 x 1 vector h, construct the 3 x 3 matrix H’.

5. Use the normalising matrices from step 1 to de-normalise H’ to get H.

This may end up with an over-constrained homography, in which case the adap-
tive RANSAC method is used to find an unknown proportion of outliers and
then and create a better homography with fewer point pairs. Again this is a
standard algorithm and is explained in detail in Chapter 4 of [8] with only an
outline given here. The threshold for the determination of whether a point is
an outlier or inlier is found as part of the normalised DLT algorithm as the
maximum transfer error i.e. how far the image point of the point pair is from
the image point calculated from the calibration point and the homography. A
diminishing percentage of that value, starting at 100%, down to 0%, in steps of
1%, is used as the distance threshold for RANSAC calculations so that if the
homography is still found to be over-constrained the RANSAC algorithm is run
again with a smaller distance threshold until the homography is found to not
be over-constrained or less than 4 point pairs are defined as inliers. The steps
in the algorithm are:

• Initialise the sample count to be 0, N =∞, current assumed inliers are 0,
and p, the probability we have chosen at least one sample with one outlier
in it, to be 0.99.

• While N > samplecount repeat

– Choose a random sample of 4 point pairs where no 3 of them are
collinear.

– Calculate the homography using the normalised DLT algorithm for
these four points.

– Using all the point pairs, compare the image point to the calculated
image point using the calibration point of the pair and the calculated
homography. Classify the point pair as inlier or outlier based on the
distance between these points using the distance threshold passed
into the algorithm as the dividing point.

– Calculate the variance of the inliers.

– We may need update the value of N using the value of p and the
current estimated number of outliers. This is only done if the number
of inliers is greater than the current assumed inliers. Note that this
will only tune N downwards as more and more inliers are found. N
is the number of samples we must pick to have a probability of p
(currently set to 0.99) of picking one in which all of the samples are
inliers.

– If the currently calculated homography produces either: more inliers,
or the same number of inliers but with less variance, or this is the
first time through the loop, set the current best set of inliers to be
the current set of inliers.

– Increment the sample count by 1.

• Use the best set of inlier point pairs to create a homography using the
normalised DLT algorithm.
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As a final step in both these algorithms, use the bundle adjustment Levenberg-
Marquardt algorithm to get the maximum likelihood estimation using all the
point pairs. See Section 6.8.

6.3 Explanation of the Image of the Absolute Conic (ω)
The concept of the Image of the Absolute Conic (IAC) seems rather abstract
but is quite useful so it would be good to give a short explanation of where it
comes from. This involves a number of ideas that may seem unrelated at first
but they do come together.

1. We can define parallel lines in 2D as lines that meet at “the line at infi-
nity” and define this line at infinity in 2D homogeneous coordinates to be
(x, y, 0)T

2. In 2D Euclidean geometry a circle and an ellipse have different properties,
the most relevant being that two circles will in general intersect in two
points, whereas two ellipses intersect at four points. In both cases we are
intersecting two second degree curves or solving two quadratic equations
and should therefore get four solutions. The difference is that in the case
of circles two of these points are complex points.

3. The equation of a circle in homogeneous coordinates (x, y, w)T is: (x −
aw)2 + (y − bw)2 = r2w2 and we can see that the points (1,−i, 0)T and
(1,+i, 0)T lie on every circle. These are the complex points that are two
of the intersection points of two circles and they lie on the line at infinity.
These points are called circular points.

4. Projective geometry is a more generalised form of geometry than the stan-
dard Euclidean geometry we are used to from high school and a projective
transformation does not necessarily preserve angles, line length, ratio of
lengths, or anything other than the straightness of lines but in the 2D
case it can be limited to be Euclidean if we single out a line at infinity
and subsequently two circular points on this line.

5. We can generalise this result to 3D in the following way: two spheres
intersect in a circle but two general ellipsoids intersect in a general fourth
degree curve. We can see that in homogeneous coordinates (x,y,z,t) all
spheres intersect the plane at infinity in a curve with the equation x2 +
y2 + z2 = 0; t = 0. This is a second degree curve, called a conic, lying
on the plane at infinity and consisting only of complex points. This is
called the absolute conic. A 3D Euclidean space is defined by singling out
a plane at infinity and specifying a particular conic lying on this plane as
the absolute conic.

6. For a camera not on this plane at infinity, the plane at infinity in the world
maps one-to-one onto the image plane as each point on the image plane
maps to a line in the world that intersects the plane at infinity at one and
only one point. The absolute conic, being on the plane at infinity must
also map point-for-point to the image plane and the conic so mapped is
the Image of the Absolute Conic (IAC).
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7. If the IAC is known then the Euclidean structure of a scene can in principal
be found. In the case of a single camera this is somewhat limited as a point
in the image being reconstructed can only be reconstructed as a ray in the
real world but, in the case of multiple camera angles, real world points
can be estimated by points of intersections of rays from different cameras
etc.

The IAC is a symmetrical 3x3 matrix with 6 unique entries so it requires 5
constraints to estimate it up to scale. The main ones used in this implementa-
tion and emphasised by Zhang are 2 constraints from each planar homography.
Therefore if we have 3 or more images known to be taken from the same camera
with the same settings then the IAC can be found from these alone. Due to
the fact that the IAC is also defined as ω = (KKT )−1there are a number of
constraints that can be used based on assumptions about the camera matrix
parameters as well:

1. 1 constraint comes from the assumption that there is zero skew i.e. image
axes are perpendicular and so pixels are not a general parallelogram but
are restricted to be rectangular. This is normally a valid assumption but
is only made if there are less than 3 images to be used to estimate the
IAC.

2. 2 constraints come from the assumption that the principal point is at the
image coordinate origin. This assumption is only used when each image is
taken individually and the image coordinate origin is pre-processed to be
at the centre of the image as this is a good first guess but will normally
be out by a few pixels. If the radial distortion is large enough the center
of distortion can be estimated and this used as the coordinate origin in
subsequent calculations. Note that due to the specific implementation
of the derivation of the IAC, namely expressing the constraints as linear
combinations of the IAC entries that sum to zero, the principal point
cannot be assumed to be anywhere but the origin so if it is known to be
at a specific point the coordinate frame needs to be changed to make this
point the image origin before the IAC is calculated.

3. 2 constraints come from the assumption that the pixels of the image are
square i.e. the pixel aspect ratio is 1:1 and there is zero skew. Note that
due to the way the IAC and camera matrix are put together you cannot
easily assume the pixel aspect ratio is 1:1 and *not* assume zero skew.
There is optional metadata for images stored in the EXIF format that can
confirm that this is a valid assumption but, as it is optional, its absence
cannot be taken to infer that this assumption is invalid. Currently these
constraints are only used when multiple planar homography constraints
are not all independent leading to 3 independent constraints although it is
possible in future the EXIF information may be read and this constraint
added if appropriate.

As the current implementation treats each image independently the first two
assumptions have to be made, although there is also code to implement this
hierarchy of constraints if need be.
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6.4 Estimating Camera Matrix (K) given H via ω

The camera matrix K is of the form K =

 α γ u0

0 β v0
0 0 1

. u0and v0are the

coordinates in the image coordinate frame of the principal axis. α,β, and γ
embody the shape of pixels and the focal distance, in pixel coordinates, and can
be further decomposed as α = f , β = fa,γ = fs with f = su, the focal length
in u-pixels, a = sv

su cos(θ) the aspect ratio v:u pixels s = −tan(θ) the skew factor
as suggested in [15].

Normally γ = 0 as most cameras either have perpendicular axes or are
processed so that the digital image obtained has perpendicular axes, but a non-
zero value can also be interpreted as a result of taking an image of an image. The
Zhang method estimates these parameters from constraints that can be placed
on the Image of the Absolute Conic (ω) which is then decomposed directly into
the five camera matrix components and a scaling factor via formulae devised by
Zhang.

The estimation of the camera matrix is then replaced with the problem of
estimating the IAC. This can be done, up to scale, by creating a matrix A
where each row of A is a constraint on the values of the six components of ω
and solving to find these components. i.e.

B =

 B11 B12 B13

B12 B22 B23

B13 B23 B33

and A

B11

B12

B22

B13

B23

B33

 = 0 where B = λω, with λ being

a scaling factor.
Because there is a further constraint on ω that it be a symmetric positive

definite matrix, as are all matrices formed by one matrix multiplied by its own
transpose, we test the matrices B and -B to see if either of them is symmetric
positive definite. If neither of them is symmetric positive definite it is normally
an indication that the homography may be over constrained and so it can be
calculated again using less points with the adaptive RANSAC method. If this
has already been done there is catch all code that will do a polar decomposition:
B = UP where P is the symmetric positive definite part of the matrix and U is
the unitary part i.e. UTU = I. It is assumed at this point the only reason this
will happen is because of rounding errors so we can throw away the U portion
and set B = P . This can be calculated from a standard SVD decomposition of
B. See Appendix B.

The matrix B so estimated can then be directly decomposed into the com-
ponents of K and the scaling factor λ using the formulae given in the Zhang
paper and reproduced below:

v0 = (B12B13 −B11B23)/(B11B22 −B2
12)

λ = B33 − [B2
13 + v0(B12B13 −B11B23)]/B11

α =
√
λ/B11

β =
√
λB11/(B11B22 −B2

12)
γ = −B12α

2β/λ
u0 = γv0/β −B13α

2/λ
An overview of how these can be derived is in Appendix A.
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Each planar homography leads to two independent rows of A, equation 8 of
[20]. Therefore if the only constraints are to be from the planar homographies
we need 3 non-degenerate images to find the IAC and therefore the camera
parameters. If we only have two images or we wish to treat each image inde-
pendently then we need to define other constraints so they can easily be added
into the matrix A. As the components of the IAC are related to the components
of the camera matrix we can use assumptions about some of them redfined as
linear combinations of the components of the IAC that sum to zero:

1. The constraint that there is no skew i.e. γ = 0 leads to the constraint
that ω2 = 0 which can be done by adding a row to A: (0,1,0,0,0,0).

2. The constraint that the principal point is at the image coordinate origin
i.e. u0 = 0,v0 = 0 leads to ω4 = 0and w5 = 0 which are accounted for by
adding two rows to A: (0,0,0,1,0,0) and (0,0,0,0,1,0).

3. The constraint that we have square pixels i.e. γ = 0, α = β leads to
the constraints that ω2 = 0 and ω1 − ω3 = 0 which are two rows to A:
(0,1,0,0,0,0) as with the no skew constraint and (1,0,-1,0,0,0).

With combinations of these constraints we will then have a matrix with a rank
of at least 5 and it is possible to estimate ω by using SVD, see Appendix B,
and therefore the elements of the camera matrix. Currently the images are
being considered independently so the no skew and principal point constraints
are used. In the future case of two independent images we use only the first
assumption of no skew and, for three or more, we don’t need to make any such
assumptions. The square pixel constraint is not currently to be used unless the
matrix A is of rank 3 which would only happen in the case where there are
multiple images but the constraints they produce are not all independent.

6.5 Estimating Rotation and Translation Matrix (R|t) gi-
ven K and H

Once the camera matrix K has been estimated it can be used in conjunction
with the planar homography to find a good first estimate of the rotation and
translation matrix. Again Zhang provides a simple set of formulae to find this:

r1 = λK−1h1

r2 = λK−1h2

r3 = r1 × r2
t = λK−1h3

where r1, r2, r3 are the 3 columns of the R matrix, h1, h2, h3are the 3 columns
of the planar homography matrix H, and λ is a scaling factor. In the case of
perfect estimation of K, λ = 1/||K−1h1|| = 1/||K−1h2|| but in the general case
the two will give slightly different answers. If you pick the first, you over-fit to
the image x axis and tend to be out in the y direction. If you pick the second,
you over-fit in the image y axis and tend to be out in the x direction. In this
software implementation this has been solved by setting it to the average of the
two i.e. λ = 2

||K−1h1||+||K−1h2|| although in testing it was found that the two
values are only different by fractions of a percent.

These formulae can be derived from the definition of P as P = K[R|t]Z
where Z = I and can therefore be ignored, and the knowledge that the first,
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second, and fourth columns of P are the first, second, and third columns of H,
leaving only the third column of P undefined, hence the arbitrary scaling factor
λ.

Note that the rotation matrix so estimated will not in general be an actual
rotation matrix but the closest fit can be found using SVD, see Appendix B.

6.6 Estimating Z scale factor (Z)
The Zhang method will find a camera matrix plus rotation and translation
matrix but the z scaling factor is rather arbitrary as we have defined z=0 to
be the calibration plane and therefore have no data on z. We do however have
knowledge of the scaling done in x and y so we can define our first guess at the
z scale in terms of x and y. The x and y scales of the calibration sheet and
therefore the internal coordinates have been changed to be in millimetres to
reflect real world measurements and should therefore be the same and it makes
sense to define the real world z scale similarly. This will serve in most cases
but for additional generality and robustness we will define the z scale to be the
average of the x and y scales.

By so doing we have therefore defined ||uzr|| = ||uxr||+||uyr||
2 with uxr, uyr, uzr

being x,y, and z unit vectors in the real world frame. We also want ||uzi|| =
||uxi||+||uyi||

2 where uxi, uyi, uzi are x,y, and z unit vectors in the image homo-
geneous coordinate frame . To get the correct scale conversion factor therefore
we use the formula s = ||uxi||+||uyi||

2||uzi|| . To get the lengths of these vectors we
transform the real world homogeneous origin (0, 0, 0, 1)T to image homogeneous
coordinates and find the unit vectors distance between it and the real world
points (1, 0, 0, 1)T , (0, 1, 0, 1)T , and (0, 0, 1, 1)T also transformed to image ho-
mogeneous coordinates. From this we find s but with an ambiguity of sign. To
take out this last ambiguity we must assume that all images are taken with
a camera in the positive real world z direction i.e. the camera is above the
calibration sheet. If we then compare the length of the vector connecting the
inhomogeneous projected image points of the origin and (0, 0, 1, 1)T with the
origin and (0, 0,−1, 1)T we can easily see whether the sign is correct. For a
camera in the positive z direction, the vector from the positive z point to the
origin should be larger than the vector from the negative z point to the origin.
If this is not the case, simply multiply s by -1.

The final matrix Z is a simple 4x4 matrix of the form:

Z =


1 0 0 0
0 1 0 0
0 0 s 0
0 0 0 1


6.7 Estimating Radial Distortion Matrix (D) or Radial

Distortion formula for pre-processing
The lens in a camera introduces distortions in the image with radial distortion
being the one most commonly corrected for. As you get further from the center
of distortion, straight lines are imaged as more and more curved. The point
pairs used for the estimation of radial distortion are the image points and their
paired calibration sheet point transformed, using the above estimated matrices,
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to image points with the assumption being that any transformation error can
be attributed to radial lens distortion.

This software is to implement two models for radial lens distortion; the first
is based on a simple formula that needs one parameter estimated and is given
a known center of distortion, but only works at low levels of distortion. The
second estimates distortion using a 3x3 matrix but only works at high levels of
distortion, such as with fish-eye lenses and cheap cellphone or web-cams. Note
that with this second method the 3x3 matrix can be manipulated to also give a
center for the distortion.

It is intended that the distortion matrix be initially estimated with a sanity
check run on it to see if we should instead fail over to the radial distortion
formula but this is not yet implemented. Instead only the first one parameter
estimation is currently working with the code for the distortion matrix currently
commented out as it has not been tested. For completeness, both methods are
discussed here.

6.7.1 Radial Distortion Formula

The radial distortion formula is a variation of the standard infinite sum Taylor
series introduced in [16, 17] and used with minor variations ever since: ru =
rd(1+k1r

2
d+k2r

4
d...), with rubeing the undistorted radius, rdbeing the distorted

radius, and k1..∞being the parameters to be estimated. The main variations are
where to truncate the series with most finding that only estimating one or two
terms is enough. In this case the formulation is simply truncated at the first
term i.e.ru = rd(1 + kr2d) or, a form that we will use later, r2dk = ru

rd
− 1. A

point must be defined as the center of distortion and with no other relevant
information the only point that can be used is the centre of the image.

We can use our set of point pairs to find a best fit k by constructing two
matrices A and B and getting the least squares solution to Ak = B where A
and B are both nx1 matrices, and therefore k is scalar, or a 1x1 matrix. Each
row of matrix A will contain a single column with the value r2d and each row
of B will contain the value ru

rd
− 1. As can be seen each row will then be the

equivalent of r2dk = ru

rd
− 1 for different rdand ru values but each row will have

same value for k.

6.7.2 Undistorting the Image

Note that the above function is not easily reversible so that although we have a
formula that tells us where the undistorted point is if we have a distorted point,
we can not easily find where a distorted point maps to given an undistorted
point.

For this reason if this is the distortion method used we must take the whole
image, which is currently distorted, undistort each point, and resample it to get
an approximately undistorted image for use in the latter sections. In comparison
the Radial distortion matrix has a defined inverse so it is hoped that this time
consuming step is not necessary and the distortion can be applied only to those
points that need it.

As the undistorting of the image is a time consuming task a few enhance-
ments are made. The undistorted points are stored in a Uniform 2D grid with
approximately the same number of cells as there are pixels in the image. For
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each pixel point to be re-sampled the grid is queried starting with the cell in
which the pixel point resides, then moving out to include its eight neighbour
pixels in a 3x3 grid centred on the starting cell, and then 5x5, or even 7x7 mask
until at least one cell contains a point. The grey-scale values of the points in the
cells queried are recorded, as well as the point placements and the grey-scale
value of the new undistorted pixel is interpolated from.

6.7.3 Radial Distortion Matrix

The radial distortion matrix is based on [9] and the logic behind it is quite an
involved process. A short summary only will be provided here. The Fundamen-
tal Matrix is a matrix that contains all the information about the relationship of
two images of the same scene to each other and is normally calculated from the
underlying camera parameters and rotation and translation matrices for each
image. In this case the Fundamental matrix is being used to compare the set of
distorted points to the set of undistorted points. The standard way to construct
the Fundamental matrix is by use of the normalised 8 point algorithm which re-
quires at least 8 point pairs. Once the Fundamental matrix is constructed then
it can be decomposed to reveal the center of the distortion and a way of map-
ping between distorted and undistorted image points. There are however three
degrees of ambiguity for this mapping which need to be solved before this be-
comes a unique mapping. This can be done by simply enforcing the constraints
that are part of the definition of radial distortion, namely that the amount of
distortion is based purely on the distance from the center of distortion, and
that the order of a ranking of points based on their distance from the center of
distortion does not change between the distorted and undistorted images.

After the Fundamental matrix is calculated we have six terms of the 3x3
matrix D and we need to find the other 3. The first row of D is the second
column of F, and the second row of D is the negative of the first column of F,
and the third row is the vector v that we still need to find. i.e.

D =

 F12 F22 F32

−F11 −F21 −F31

v1 v2 v3


To get the final row we order the image points in order of increasing distance

from the center of distortion and construct a matrix (n-1)x3 where each row is
(λx, λy, λ) where the x and y values are from the individual point coordinates of
the calibration sheet coordinates and λ is a value calculated by comparing the
radial distance from the center of distortion of this point to the radial distance
of the next point in the list.

Once this is done we use SVD to find the minimum of ||Av|| subject to the
constraint that ||v|| = 1. See Appendix B

6.8 Bundle Adjustment for Maximum Likelihood Estima-
tion using Levenberg-Marquardt Algorithm

For a good introduction to the different algorithms used for minimisation pro-
blems, including the Levenberg-Marquardt (LM) algorithm, see [12]. Without
getting into the specifics, we are trying to find the global minimum of a multi-
dimensional function so we find a good first approximation and then we find the
slope in the current neighbourhood and take a step in the “downward” direction
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until we reach the minimum. If the first approximation was a good one, this
will be the global minimum. The intricacies of the particular algorithm chosen
are in how big a step we should take, in which direction, and what the stopping
condition should be and as the original source code for the LM algorithm im-
plemented came from [4] and the core of it has not been changed most of this
can be glossed over.

What we do need to know is that the LM algorithm uses the partial derivative
terms to determine the next step. In the original code, each problem needed to
have its own partial derivative function pre-defined but this has been replaced
with a generic partial derivative estimation method. Recall that a derivative is
a measure of how much a function changes as the input changes with the partial
derivative being simply the measure of how much a function with multiple inputs
changes as a single one of those inputs changes with all others being equal. This
measure is defined as the instantaneous value of the slope for a point in the limit
where the change in the input becomes zero and in high school we learnt all the
rules of thumb for taking a function and creating from it a derivative function
which could then give the instantaneous slope for any input point.

However, in this case we define a general partial derivative and so go back
to the basics and not worry about a derivative function but simply calculate the
partial derivative of a input value as what happens if this input value is changed
slightly. In the current code this is done by taking two values of 99.9999% and
100.0001% of the target input value, unless the target input value is zero, in
which case we use +/-0.0001, leave all the rest of the inputs the same, and
calculate the output value of the function at these two points. The partial
derivative is then returned as the difference in the input values divided by the
difference in output values.

We can now concentrate of defining the functions we wish to find the maxi-
mum likelihood and least error for.

6.8.1 2D Planar Homography

Normally the 2D planar homography estimated using the normalised DLT algo-
rithm, see Section 6.2, is already near enough to the best estimate that this will
not give a better answer but, just in case it will, the homography matrix is used
as the nine dimensional function to minimise with the points in the calibration
sheet as the input and the image points as the target output.

6.8.2 Camera Calibration

To minimise the adjustment that needs to be done the nine element rotation
matrix is converted to a 3-vector using the Rodrigues formula which has the
same information in a more compact form, specifically the axis of rotation is
that of the vector and the rotation angle is given by the magnitude. This can
be done with the following formulae; for a derivation of these see Appendix 4 of
[8].

(R− I)r′ = 0
2 cos(θ) = trace(R)− 1

2 sin(θ) = r′T

 R32 −R23

R13 −R31

R21 −R12


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r = θr′

where I is the 3x3 identity matrix, R is the original rotation matrix, r’ is
unit length direction vector which can be found from the first formula using
SVD, θ is the rotation angle, and r is the final Rodrigues 3-vector. The trace
function is simply the sum of the diagonal elements of the matrix.

It should be noted that in some formulations, the magnitude for the 3-vector
is calculated directly using the arc-cos or arc-sin functions but as mentioned in
Appendix 4 of [8] this is not numerically accurate and fails when the angle is
180 degrees. A better way is to feed the sine and cosine values into the two

parameter arc-tan function i.e. θ=arctan 2( 1
2r
′T

 R32 −R23

R13 −R31

R21 −R12

 , trace(R)−1
2 )

We will also need to go from the Rodrigues formulation to the full rotation
matrix. This is accomplished with the following formula:

R = I + sin(θ) [r′]× + (1 − cos(θ)) [r′] 2
× where [r′]×is a 3x3 matrix repre-

sentation of the cross-product function for the 3x1 vector r′. See Appendix
C.

Once this has been done we can then make more efficient use of the LM
algorithm to do a bundle adjustment on the various parameters: 3 for rotation,
3 for translation, 5 for internal camera calibration, 2 for the image origin, and
either 1 for the lens distortion function, or 9 for the lens distortion matrix. The
input is the set of centres of the calibration sheet ellipses transformed to the
image, found by transforming multiple points on the circumference and finding
the middle. The target is the set of image points paired with these ellipse
centres, which, in the case of the 1 parameter distortion function, are changed
to take account of this distortion.

7 Image Segmentation Technique
An important part of the process is to determine which parts of the image are
part of the currently unknown object of interest and which parts of the image are
part of the calibration sheet. The process for doing this relies on the assumption
that lighting of the object is nearly uniform and that parts of the object and
the calibration sheet near the edges are significantly different enough from their
neighbouring background pixels that the edge detection algorithm can find these
edges.

The image segmentation algorithm processes the edge map, detected ellipses,
and grey-scale map to produce a 2D map where each cell has been processed to
be one of four states: unknown, calibration sheet, edge, or other. The segmen-
tation technique used is conservative in detecting the calibration sheet in that
if a cell is set to calibration sheet it will be part of the calibration sheet but
there may be other cells that have been miscategorised that may in fact be part
of the calibration sheet. This is used later so that if a 3D point back projects
to a calibration sheet cell in any image it is known to be part of the calibration
sheet and thought to be part of the object if it does not.

The segmentation takes place in a series of steps:

1. The segmentation map is initially set with all cells inside the 4 sided po-
lygon, or tetragon, formed by the calibration sheet corners are set to be
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unknown and those outside are set to other. This is based on two bary-
centric coordinate transforms using two sets of three of the four corners
of the calibration sheet transformed from real world to image coordinates.
If one or more of the barycentric coordinates are negative then the cell is
outside the triangle formed by these three corners. The two sets of corners
are chosen so that they have two corners in common and these corners are
diagonally opposite corners. This means that if the cell is outside both
triangles it is, by definition, outside the calibration sheet in the image.

2. The edge map is processed to set some of the unknown cells to be edge
cells with reference to the edge detection algorithm resolution so that for
each edge point, cells within the radius of the resolution of this point are
also set to the edge state.

3. The ellipses that have been mapped to calibration sheet circles are used to
set cells to be in the calibration sheet state. Note that this should include
some of the cells previously set to be edge state.

4. A flood fill algorithm is used on contiguous edge state cells to change them
to calibration sheet state if they have any such cells on their border.

5. A weighted average grey-scale value is calculated for each ellipse center
using up to eight points weighted by the inverse of their distance squared
from the center point. The points used are selected by traversing in the
eight cardinal directions from the center point checking each cell to see if it
is unknown. When the furtherest such cell is found the grey-scale value of
the points this distance away in each of the eight directions are compared
to the grey-scale value of the center point and if the difference is over the
threshold used for the edge map it is used in the weighted average.

6. The above grey-scale values for each ellipse center are used to calculate
a weighted average grey-scale value for each unknown cell and this value
compared to the actual grey-scale value. If the difference is above the
threshold used for the edge map the cell is set to the other state.

7. A final flood fill is done to change contiguous unknown cells to calibration
sheet state if they have any calibration sheet cells on their border.

For use in further processing this four state 2D array is post-processed down to
a boolean 2D array where the cell is set to true if it is in the calibration sheet
state or false otherwise.

This is currently a very basic segmentation technique that has a tendency
to not work on shadows so is only really effective in an environment of highly
diffuse lighting. This will need to be changed in the near future to a more robust
algorithm.

8 Finding the Object
The initial rough estimate of the object uses the image segmentation to create a
silhouette of the object using a voxelisation of the volume of interest. This will
give a maximal shape of the object and may be able to define holes through the
object but will not be able to show concavities. For example, if the object is
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a coffee mug, this technique will be able to distinguish the shape of the handle
but will not be able to show the inside of the cup, it will simply be a cylinder.

This “holes but not hollows” problem means a second technique should be
used to further estimate the more fine-grained shape of the object. One such
approach is using 3d edge estimation from the 2d edges detected in the images.
This is currently not used and is likely to dropped in favour of a colour/texture
matching algorithm in the future.

8.1 Voxelisation
The object is assumed to lie within the volume of interest: that volume of space
immediately above the calibration sheet out to a height that is the larger of the
dimensions of the calibration sheet. This volume of space is subdivided into
equal sized 3d boxes called voxels. In the current implementation the volume is
subdivided into a 128x128x128 grid by default. For each voxel, each of the eight
vertices is categorised as being inside or outside the object by testing to see if
it point back-projects to a point in all images and if so whether this point has
been categorised as the calibration sheet in any image. If a voxel has all eight
vertices categorised as outside, the voxel is defined as being outside the object.
If all eight vertices are categorised as inside, the voxel is similarly categorised
as being inside the object. If some vertices are inside and others outside, the
voxel is said to be a surface voxel. Note that as the voxels share vertices, the
actual implementation tests the 129x129x129 vertices and categorises the voxels
accordingly.

However, as the image segmentation only definitely defines the calibration
sheet, it may be that some voxels are categorised as inside or surface voxels when
they are actually voxels that have vertices that back-project to the background
in an image, not the object we are interested in. To overcome this we post-
process the inside and surface voxels and set to outside those that do not have a
pathway through other inside and surface voxels to the calibration sheet. This
means voxels “floating in space” are identified and ignored.

This is a three step process where in the first step we start at the calibration
sheet and sweep upwards a layer at a time and identify those inside and surface
voxels that are attached to inside or surface voxels in the layer below (that are
not marked for deletion) and mark for deletion any that are not. In the second
step the inside and surface voxels left are used as a seed for a 3d flood fill where
any voxels marked for deletion that are immediate neighbours of those that are
not, are themselves reset to not be deleted. Finally, any voxels still marked for
deletion are reset to be outside voxels.

This gives us the final output: a “chunky” representation of the maximal
volume of the object.

8.2 3D Edge Estimation (currently not used)
For ease of calculation a single bounding box is calculated to enclose the “chunky”
representation so that obviously irrelevant points or lines can be more easily ex-
cluded by testing them against this single bounding box. Each 2d edge point
in each image is converted to a ray in space and tested to see whether or not
it interests with, firstly, this bounding volume, then the more defined volume
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inside this, our current volume of interest. If it does not interesect our volume
of interest it can be ignored from this point on.

We now have a series of rays in space that intersect our volume of interest
and we wish to match up the rays from each image that relate to the same point
and triangulate them to give a precise 3d point in space.

To do accurate matching of these rays we need to rectify the pairs of images
so that if a pair of edges relate to the same 3d point, they have the same x coor-
dinate in the new rectified reference frame. The technique used to calculate the
rectification homographies was taken from[11]. Once the matched points have
been identified they are adjusted to minimise a cost function as in Algorithm
12.1 of [8].

Once all combinations of image pairs have been rectified and rays matched
the 3d points are estimated using the linear triangulation method suggested in
Algorithm 12.1 [8].

Each point is tested as the vertices of the voxels were above and ignored if
it back-projects to the calibration sheet in any image.

In this way we end up with a point cloud of 3d points within the “chunky”
voxelised maximum volume object representation found earlier.

There is however still the issue that whilst this technique will find the real
3d edge points it is also likely to come up with spurious ones as well. This can
be seen by thinking of two images taken of a table-top corner where each image
contains the corner but one image contains the edge clockwise from the corner
and the other image contains the edge counter-clockwise from the corner. The
two edges form the bases of two triangles in space the camera centres being
the third points of the triangles. Assuming the camera positions are estimated
accurately, the corner point will also be estimated accurately. However, the
points along the respective edges will be used to estimate a series of points
forming a diagonal line above the tabletop where the two triangles of the edge
line projection planes intersect.

This issue is negated in the main by testing that all edge points are within
the voxelised representation and do not back-project to the calibration sheet
in any image but there are still spurious points identified so this is currently
commented out.

9 Converting surface voxels to triangles
Each surface voxel has six faces. For each face of such voxels two simple tests are
performed: Is the face at the edge of the volume of interest or is the neighbouring
voxel sharing that face specified as an outside voxel? If either of these tests is
positive the face is split into two triangles and these are added to the list of
surface triangles. The triangles are arranged so that the two shared vertices are
diagonally opposite corners of the voxel face. In each case the triangle normal
is calculated so that it is oriented away from center point of the voxel.
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10 Converting point cloud to triangles (currently
unused)

Once a 3D cloud of points has been found as a representation of the object it
must then be converted to non-intersecting triangles so that it can be output
into a STL file. If the set of points were known to all lie of the convex hull of the
object then we could use one of a number of methods of Delaunay triangulation
to convert this hull into a number of triangles. However, this may not be the case
and so we need to do something a little more complicated. First we carve the
space around the point cloud into an interlocking grid of irregular tetrahedrons
with triangles for their faces. The tetrahedrons so created will fill the space
and by definition have faces in common with their neighbours. An internal
tetrahedron will have all of its faces shared with a neighbour whereas a surface
tetrahedron will have at least one face that is associated with that tetrahedron
only. By eliminating the irrelevant tetrahedrons from this space a set of triangles
describing the surface can be found as the faces of any tetrahedrons that are
not connected to any other tetrahedrons.

The most convenient form of triangulation for these triangular face is the
Delaunay triangulation which is a technique for taking a set of points, normally
done in 2D, and creating non-intersecting set of triangles from them. The more
formal definition is that no point is inside the circumcircle of any of the triangles.
A circumcircle is the circle made by constructing a circle such that the three
vertices are all on the circumference of the circle. By definition the center of
this circle will be at the point of intersection of the three lines that bisect the
three edges of this triangle and the radius is the distance from this centre to
any of the three vertices. A Delaunay triangulation tends to avoid long skinny
triangles and maximises the minimum of the three angles in the triangle.

The idea of Delaunay triangulation can be extended to 3 dimensions and
create Delaunay tetrahedrons where each non-intersecting tetrahedron is made
with four points which describe a circumsphere which does not contain any
of the other points in the point cloud. As each of these tetrahedrons will have
faces in common with its neighbours, having just the normal pointing a different
way, a tetrahedron can be tested and if it is found that one face is not part of
the object, the whole tetrahedron can be deleted which leaves the neighbouring
tetrahedrons that had faces in common as surface tetrahedrons until such time
as they are tested and potentially eliminated as well.

The DeWall algorithm, described in [?], was used as the basis of the space
carving. This paper describes an extension to Delauney triangulation, to an
arbitrary number of dimensions with a clever modification to the common “Di-
vide and Conquer” recursion approach used to simplify the problem. In most
“Divide and Conquer” methods there is significant amounts of time needed to
stitch together the results from the various sub-problems but this is not the
case in the DeWall algorithm as the problem is subdivided in a way that means
there is no overlap in the results returned by the recursive subproblems. For
simplicity the following explanation will be confined to the case of converting a
3D point cloud into tetrahedrons.
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10.1 DeWall Algorithm
The DeWall algorithm is based on a recursive “Divide and Conquer” strategy
whereby the function is given a list of triangular faces and initially just asked
to put them into two lists based on whether they are on one side or the other of
a dividing plane or a third if they span the dividing plane. The point list is also
divided based on this dividing plane. The dividing plane is cyclically chosen
to be a plane orthogonal to the 3 axes and is halfway between the midpoints
of the point array when they are ordered by this axis’s values. The list of
triangular faces that span the dividing plane are processed one at a time to find
a fourth point that fulfils the criteria to create a Delaunay tetrahedron with the
minimal Delaunay distance, when possible. This Delaunay distance is simply
the radius of the circumsphere created by these four points or its negative if
the circumsphere centre and the fourth point are on opposite sides of the plane
created by the first three points.

This tetrahedron is then added to the final list of tetrahedrons and the faces
of this tetrahedron are then added to one of the three lists of triangular faces.
Processing continues until no more triangular faces remain to be processed in
the list that spans the plane. At this point, if one or both of the other lists
contains any triangles to test the procedure is called recursively with this list
and the appropriate half set of points.

To seed this an initial tetrahedron needs to be created. This is done by
building the tetrahedron up one point at a time: the first point is the point
closest to the initial dividing plane, the second as the point on the other side
of the dividing plane that is closest to the first. The third is created using the
first two points as two vertices of a Delaunay triangle with the third point that
one which allows the creation of a circumcircle with the minimum radius. The
fourth is then created in much the same way as a normal Delaunay tetrahedron
given a triangular face.

This is the core algorithm but there were also some additional enhancements
for speed. The main one is that instead of testing all points to find the minimal
Delaunay distance, the points are partially ordered by using a 3D Uniform Grid
arrangement and points in the cells are tested in stages of increasing distance
from the triangular face. If a known minimum solution is found in an earlier
stage the testing terminates early.

To gather information on how complete the algorithm is i.e. information
used to update the progress bar, as each point is used in new face a counter is
incremented and each time a face is used to try and create a tetrahedron the
counter for each of the three points in the triangle are decremented. Whenever
the count decrements to zero the point has been finished with.

10.2 Problems with the DeWall Algorithm and implemen-
ted solutions

It is not mentioned in the paper but in the documentation bundled with the
code referenced in the paper it mentions that sometimes the algorithm gets into
trouble and so an additional check is needed for Cyclic Tetrahedron Creation
(CTC). This simply means that before a tetrahedron is added to the output list
it is checked that it does not already exist in the list. If this situation were to
arise and nothing was done this could lead to an infinite loop. The main reason
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for this is mis-categorisation of the triangular faces due to rounding errors on
the calculated split-plane.

Note that if the additional faces to be processed are always added to the
list being currently processed then this algorithm ceases being recursive and
becomes simply sequential and so the leading cause of the Cyclic Tetrahedron
Creation is eliminated. However, this makes the resulting algorithm magnitudes
slower and is not a very elegant solution. A hybrid approach leads to the creation
of a threshold value, in this case a minimum number of points to be processed, for
changing this algorithm from recursive to sequential. It was found that setting
this threshold to 100 points did not delay the algorithm much and eliminated
most of the test cases where a CTC fault was detected. In all other cases it
was found that changing the orientation of the initial slice plane eliminated the
problem. For completeness there is also a final fallback to a fully sequential
algorithm if CTC faults are detected for are 3 orientations of the initial dividing
plane. It may be that a better solution would be to dynamically double the
minimum number of points threshold and try each orientation again until success
occurs but with no test cases it is uncertain how long this would take as opposed
to going directly to the strictly sequential implementation.

There is also another problem with the algorithm in that the creation of the
first tetrahedron will fail in two pathological cases: if the four points selected
are all in the same plane or there exists a fifth point co-spherical with the first
four i.e. the five points lie on the surface of the same sphere. Unless the points
are all in a grid arrangement or all points are actually points on the surface of
a sphere, it is likely that changing the initial slice plane is all that is required.
Given that the points themselves are currently being calculated it is unlikely
that either case will actually arise.

10.3 Elimination of non-object tetrahedrons
The core of the concept of spotting and eliminating spurious tetrahedrons is
the idea that in estimating a 3d point it is inherently assumed that nothing is
between the camera centres and the the 3d point to be estimated. As we have a
list of 3d points and know the images they were estimated from and also where
the the camera centre was for these images, we can eliminate any tetrahedrons
that have a face that is intersected by a line segment constructed by one of the
points in the point cloud and one of the camera centre points associated with
the estimation of the point. In the absence of noise this will work to reveal the
surface of the object, including concavities but with noise it may also split the
object into disjoint pieces. This seems to be the same concept described briefly
in Section 4 of [13] as “simple carving”. It may be that in the future this be
enhanced with the probabilistic carving described in the same section. Note
that if the object is disjoint the piece that contains the point with the lowest z
value is considered the valid section.

Once the non-object tetrahedrons have been eliminated a simple list of the
surface triangles can be compiled creating an ordered list of triangular faces,
similar to the AFL in the DeWall algorithm, that has each of the four faces of
each tetrahedron added in turn and checked to see if the face is already inserted
and set the d1 and d2 values appropriately. This will then give a list that
contains each triangular face and an indication of how many tetrahedrons it is
associated with. The surface triangles will be those triangular faces that only
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belong to one tetrahedron.

11 Writing the STL file
Having compiled a list of triangles, it is simple enough to create an STL file.
There are two versions of the STL file format, the ASCII representation and the
more compact binary version. Currently only the ASCII version is implemented
but it is planned that the binary format will be supported in the 1.0 version.
The STL file format contains a list of triangles and for each triangle there is a
normal vector, of length 1, and the three 3d points representing the vertices of
the triangle. It should be noted that to get rid of any issues with rounding errors
in calculations producing gaps in the surface mesh where there should not be
any, the triangles are stored internally with a list of 3 integers which are pointers
to an index of 3d points. This also means that in previous stages triangles can
be compared for equality based on the indices for their vertices without having
to worry about trying to compare floating point numbers. It is only at this step
that the triangle vertices are converted to triples of floating point numbers. The
format of the ASCII version of the STL file is described in [6] along with the
note that some applications read the normal vector from the file whereas others
calculate it from the three points of the triangle. The standard solution is that
the normal vector is calculated simply by the cross-product of the vectors AB
and AC but this could give a vector pointing in the opposite direction to the
desired one. If this method gives a different result from the stored normal vector
then the solution is to swap points B and C when writing the file so that either
method gives a vector in the same direction.

Note that a common problem in STL file creation is the breaking of vertex-
vertex rule which says that all adjacent triangles share two vertices. This is not
a problem in the current implementation but needs to be kept in mind when
modifications are made in the future.

12 Conclusion
Once the STL file has been created this can be imported into a 3d CAD program
and used as the starting point for the digital design file of the real world object.
It is hoped that in the future this software becomes good enough that in most
cases the output file will not have to be manipulated and can be used by a 3d
printer, such as one built by the DIY 3d printer project Reprap[5], to give the
user an accurate copy of the object. The quality of the output at the present
time leaves a lot to be desired however.

The ultimate aim is for this software to be integrated into the software for the
Reprap project and the Reprap printer redesigned with a computer controlled
camera so that the Reprap can become a push-button 3d “photocopier”. There
is still a long way to go but it is hoped that developers will build on what this
software does to make it possible.
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A Derivation of Zhang formulae for Camera Ma-
trix Parameters

A knowledge of the how the formulae for the camera matrix parameters was
derived is not needed to make use of them but is included for completeness as
only the outline is given in the original paper and they were re-derived during
bug-fixing to make sure the formula were correct.

Given that we have created a matrix B that is the IAC (ω) up to scale and
that the IAC can be expressed in terms of the Camera Matrix K, we can express
the components of B in terms of the components of K plus a scaling factor λ.
Our starting point is the following definitions:

B = λω
ω = (KKT )−1 = (K−1)TK−1

KK−1 = K−1K = I (the standard definition of an inverse of a matrix)
So, we solve the last equation first to find K−1in terms of the camera para-

meters used in K then substitute the answer into the other two equations.

K−1

 α γ u0

0 β v0
0 0 1

 =

 1 0 0
0 1 0
0 0 1

leads to 9 equations which can be tri-

vially solved for the components of K−1to give:

K−1 =

 1
α

−γ
αβ

v0γ−u0β
αβ

0 1
β

−v0
β

0 0 1


substituting this into the equation ω = (K−1)TK−1gives the expansion la-

belled (5) in the Zhang paper

ω =


1
α2

−γ
α2β

v0γ−u0β
α2β

−γ
α2β

γ2

α2β2 + 1
β2

−γ(v0γ−u0β)
α2β2 − v0

β2

v0γ−u0β
α2β

−γ(v0γ−u0β)
α2β2 − v0

β2
(v0γ−u0β)2

α2β2 + v20
β2 + 1


Substituting this into the equation B = λω gives: B11 B12 B13

B12 B22 B23

B13 B23 B33

 = λ


1
α2

−γ
α2β

v0γ−u0β
α2β

−γ
α2β

γ2

α2β2 + 1
β2

−γ(v0γ−u0β)
α2β2 − v0

β2

v0γ−u0β
α2β

−γ(v0γ−u0β)
α2β2 − v0

β2
(v0γ−u0β)2

α2β2 + v20
β2 + 1


Taking these equations out of the matrix form gives 6 equations:
B11 = λ

α2

B12 = −λγ
α2β

B13 = λ v0γ−u0β
α2β

B22 = λγ2

α2β2 + λ
β2

B23 = λ(−γ(v0γ−u0β)
α2β2 − v0

β2 )

B33 = λ( (v0γ−u0β)2

α2β2 + v20
β2 + 1)

We also have the knowledge that α and β are the aspect ratio of the pixels
and are therefore positive and that the scaling factor,λ is not zero.

We can now relate these to the Zhang equations:

v0 = (B12B13 −B11B23)/(B11B22 −B2
12) (1)

As both the numerator and denominator of this equation are used in further
calculations they are expanded out here and labelled :
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Numerator = (B12B13 −B11B23) = λ2v0
α2β2

Denominator = (B11B22 −B2
12) = λ2

α2β2

We can now see that dividing the numerator by the denominator is simply
λ2v0
α2β2 /

λ2

α2β2 in which all the terms cancel out except for v0given that none of α,β
or λ are zero.

λ = B33 − [B2
13 + v0(B12B13 −B11B23)]/B11 (2)

Again this is set up so that all but a single λ term on the right hand side
cancels out. This can be thought of as taking the terms of B33 = λ( (v0γ−u0β)2

α2β2 )+
λv20
β2 + λ and constructing two equations to be taken away from it to take out

the terms we don’t want i.e. λ( (v0γ−u0β)2

α2β2 ) = B2
13/B11 and λv20

β2 = Numerator ∗
v0/B11 which when both taken away from B33 leave simply λ and so give the
above equation.

α =
√
λ/B11 (3)

This is simply a rearrangement of the equation for B11. Given our knowledge
that α is positive we obviously use the positive square root.

β =
√
λB11/(B11B22 −B2

12) (4)

This manipulates the above calculated Denominator using λB11 to cancel out
the αand λ terms, leaving just β2 term from which we recover the positive
square root i.e. λB11 = λ2

α2 so λ2

α2 /
λ2

α2β2 simplifies to β2given our knowledge that
neither α nor λ is equal to zero.

γ = −B12α
2β/λ (5)

This is simply a rearrangement of the equation for B12.

u0 = γv0/β −B13α
2/λ (6)

This is simply a rearrangement of the equation for B13.

B A Note on Singular Value Decomposition
Singular Value Decomposition (SVD) is the Swiss-army knife of matrix mani-
pulation and is used in a variety of circumstances. It is a decomposition of
a matrix, A, with at least as many rows (m) as columns (n), into 3 distinct
matrices of the form A = USV T where U is an m x n matrix with orthogo-
nal columns, S is an n x n diagonal matrix with positive entries arranged in
descending order down the diagonal, and V is an orthogonal n x n matrix.

In the context of this piece of software SVD is normally used to find the
solution to an equation of the form Ab = 0 where A is a constructed matrix and
b is a n x 1 vector to be found. In these cases, provided there are enough rows
of A, then the solution is simply the last column of V. If the number of rows
is less than the number of columns then it is common practice to bulk up the
matrix with rows of zeroes.

39



If the rank of the matrix so constructed is one less than the number of
columns then the last column of V gives the exact vector b such that Ab = 0. If
the matrix is full rank then the problem is over-constrained and the last column
of V gives the least squares minimisation to the solution. Note that if the
number of columns is greater than the rank by two or more then the problem
is under-constrained and there are multiple solutions.

A related use of SVD is finding the minimum of ||Ax|| subject to the constraint
that ||x|| = 1. Once again the solution is simply the last column of V.

Another use of SVD is in the taking a general 3x3 matrix and finding the
closest rotation matrix to it. In this case if R′is the general matrix, and R is the

rotation matrix you want, R′ = USV T and R = U

 1 0 0
0 1 0
0 0 det(UV T )

V T .
Most references recommend the simpler R = UV T but as mentioned in [1] this
may in fact be the reflection of the real rotation matrix if the determinant is -1,
hence the adjusted formula.

A matrix can also be decomposed A = U ′P such that U ′ is a unitary por-
tion (U ′TU ′ = I) and P is the symmetric positive semi-definite portion meaning
xTPx >= 0 for all vectors x. If the original matrix A is invertible then this de-
composition is unique and the matrix P is symmetric positive definite, meaning
xTPx > 0 for all vectors x. This decomposition can be constructed from the
SVD in the following way: if A = USV T then U ′ = UV T and P = V SV T .

C Cross Product Matrices
The standard 3-vector cross-product a × b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 −
a2b1)T can be described by a specialised form of a matrix multiplication, repre-
sented by [a]× b where [a]×is a special 3x3 matrix made from the 3-vector a in
the following way:

[a]× =

 0 −a3 a2

a3 0 −a1

−a2 a1 0


This matrix is skew-symmetric, meaning [a]T× = −[a]×
Other properties of this matrix include the relationship [a]× b = (aT [b]×)T

and that the vector a is both the left and right null vector of [a]× i.e. aT [a]× =
0T and [a]×a = 0
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