component lut5 """Arbitrary 5-input logic function based on a look-up table"""; pin in bit in_0; pin in bit in_1; pin in bit in_2; pin in bit in_3; pin in bit in_4; pin out bit out; param rw u32 function; function _ nofp; description """ .B lut5 constructs a logic function with up to 5 inputs using a \\fBl\\fRook-\\fBu\\fRp \\fBt\\fRable. The value for \\fBfunction\\fR can be determined by writing the truth table, and computing the sum of \\fBall\\fR the \\fBweights\\fR for which the output value would be \\fRTRUE\\fR. The weights are hexadecimal not decimal so hexadecimal math must be used to sum the weights. A wiki page has a calculator to assist in computing the proper value for function. .PP http://wiki.linuxcnc.org/cgi-bin/wiki.pl?Lut5 .PP Note that LUT5 will generate any of the 4,294,967,296 logical functions of 5 inputs so \\fBAND\\fR, \\fBOR\\fR, \\fBNAND\\fR, \\fBNOR\\fR, \\fBXOR\\fR and every other combinatorial function is possible. .PP .SS Example Functions A 5-input \\fIand\\fR function is TRUE only when all the inputs are true, so the correct value for \\fBfunction\\fR is \\fB0x80000000\\fR. .PP A 2-input \\fIor\\fR function would be the sum of \\fB0x2\\fR + \\fB0x4\\fR + \\fB0x8\\fR, so the correct value for \\fBfunction\\fR is \\fB0xe\\fR. .PP A 5-input \\fIor\\fR function is TRUE whenever any of the inputs are true, so the correct value for \\fBfunction\\fR is \\fB0xfffffffe\\fR. Because every weight except \\fB0x1\\fR is true the function is the sum of every line except the first one. .PP A 2-input \\fIxor\\fR function is TRUE whenever exactly one of the inputs is true, so the correct value for \\fBfunction\\fR is \\fB0x6\\fR. Only \\fBin-0\\fR and \\fBin-1\\fR should be connected to signals, because if any other bit is \\fBTRUE\\fR then the output will be \\fBFALSE\\fR. .PP .ie '\*[.T]'html' \\{\\ .HTML \\ \\
Weights for each line of truth table \\ | |||||
---|---|---|---|---|---|
Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Weight \\ |
0 | 0 | 0 | 0 | 0 | 0x1 \\ |
0 | 0 | 0 | 0 | 1 | 0x2 \\ |
0 | 0 | 0 | 1 | 0 | 0x4 \\ |
0 | 0 | 0 | 1 | 1 | 0x8 \\ |
0 | 0 | 1 | 0 | 0 | 0x10 \\ |
0 | 0 | 1 | 0 | 1 | 0x20 \\ |
0 | 0 | 1 | 1 | 0 | 0x40 \\ |
0 | 0 | 1 | 1 | 1 | 0x80 \\ |
0 | 1 | 0 | 0 | 0 | 0x100 \\ |
0 | 1 | 0 | 0 | 1 | 0x200 \\ |
0 | 1 | 0 | 1 | 0 | 0x400 \\ |
0 | 1 | 0 | 1 | 1 | 0x800 \\ |
0 | 1 | 1 | 0 | 0 | 0x1000 \\ |
0 | 1 | 1 | 0 | 1 | 0x2000 \\ |
0 | 1 | 1 | 1 | 0 | 0x4000 \\ |
0 | 1 | 1 | 1 | 1 | 0x8000 \\ |
1 | 0 | 0 | 0 | 0 | 0x10000 \\ |
1 | 0 | 0 | 0 | 1 | 0x20000 \\ |
1 | 0 | 0 | 1 | 0 | 0x40000 \\ |
1 | 0 | 0 | 1 | 1 | 0x80000 \\ |
1 | 0 | 1 | 0 | 0 | 0x100000 \\ |
1 | 0 | 1 | 0 | 1 | 0x200000 \\ |
1 | 0 | 1 | 1 | 0 | 0x400000 \\ |
1 | 0 | 1 | 1 | 1 | 0x800000 \\ |
1 | 1 | 0 | 0 | 0 | 0x1000000 \\ |
1 | 1 | 0 | 0 | 1 | 0x2000000 \\ |
1 | 1 | 0 | 1 | 0 | 0x4000000 \\ |
1 | 1 | 0 | 1 | 1 | 0x8000000 \\ |
1 | 1 | 1 | 0 | 0 | 0x10000000 \\ |
1 | 1 | 1 | 0 | 1 | 0x20000000 \\ |
1 | 1 | 1 | 1 | 0 | 0x40000000 \\ |
1 | 1 | 1 | 1 | 1 | 0x80000000 \\ |